Systemy Wbudowane

Laboratorium 5:

Analiza sygnałów GPIO i wykorzystanie przetwornika DAC

5.1 Drgania styków

Elementy mechaniczne takie jak przyciski pozwalają na zmianę stanu sygnału w momencie ich wciśnięcia. Podczas wciśnięcia może jednak powstać szereg krótkotrwałych zwarć styków przycisku, czego skutkiem może być kilkukrotnie wykrycie zmian stanu sygnału. Eliminację skutków drgań styków można próbować wyeliminować:

- Sprzętowo (np. za pomocą filtru RC)
- Programowo odczekując pewien czas przed ponownym odczytaniem stanu przycisku (np. 20ms)
- Programowo wykorzystując zmienne pomocnicze (sposób korzystny w przypadku wykorzystaniu przerwań)

Rysunek 5.1: Przykładowa wizualizacja zjawiska drgań styków

5.2 Generowanie dźwięku

Dźwięk to w uproszczeniu drgania przenoszone przez cząsteczki w danym ośrodku (np. powietrzu lub wodzie). Głośnik jest prostym i uniwersalnym elementem pozwalającym na wytworzenie takich drgań. Głównymi elementami głośnika jest magnes i cewka. Zmieniając napięcie na cewce magnes będzie przesuwał ją w górę lub w dół, generując tym samym ruch membrany i wywołując drgania (dźwięk):

Rysunek 5.2: Bardzo uproszczony schemat budowy głośnika

Ustawiając naprzemiennie stan niski i wysoki na danej linii kontrolera można generować prosty dźwięk. Należy zauważyć, że częstotliwość dźwięku słyszana przez człowieka zawiera się w zakresie od 20Hz do 20000Hz, a zatem zmiana sygnału na niski i wysoki powinna następować od 20 do 20000 razy na sekundę (optymalnie 500 - 10000).

5.3 Przetwornik DAC

Zmieniając stan linii na niski i wysoki generuje się dźwięk o przebiegu prostokątnym. Percepcja ludzka nie jest jednak zero-jedynkowa i o wiele ciekawsze dźwięki mają charakter o bardziej złożonym przebiegu:

Rysunek 5.3: Przykładowe fale dźwiękowe

Pokazane powyżej przebiegi b) oraz c) wymagają ustawienia stanów pośrednich pomiędzy sygnałem niskim i wysokim. Taką możliwość daje przetwornik DAC (*ang. Digital-to-Analog Converter* - przetwornik cyfrowo analogowy).

Płytki STM32F429ZI posiadają wbudowany DAC. Aby go uaktywnić wystarczy zaznaczyć jedno z jego wyjść:

Rysunek 5.4: Konfiguracja przetwornika DAC

Pin dla OUT1 to PA4, a dla OUT2 to PA5. Do uruchomienia przetwornika służy metoda HAL_DAC_Start(&hdac, CHANNEL);, a do ustawienia wartości na wyjściu metoda HAL_DAC_SetValue(&hdac, CHANNEL, ALIGN, wartość);, przy czym ALIGN określa ile i jakie bity będą brane pod uwagę ze zmiennej wartość (domyślnie DAC_ALIGN_12B_R - 12 bitów z prawej strony ponieważ przetwornik jest 12 bitowy).

```
/* USER CODE BEGIN WHILE */
HAL_DAC_Start(&hdac, DAC_CHANNEL_1); // uruchomienie przetwornika
while (1)
{
    HAL_DAC_SetValue(&hdac, DAC_CHANNEL_1, DAC_ALIGN_12B_R, 0); // min
    HAL_DAC_SetValue(&hdac, DAC_CHANNEL_1, DAC_ALIGN_12B_R, 1023);
    HAL_DAC_SetValue(&hdac, DAC_CHANNEL_1, DAC_ALIGN_12B_R, 2047);
    HAL_DAC_SetValue(&hdac, DAC_CHANNEL_1, DAC_ALIGN_12B_R, 3071);
    HAL_DAC_SetValue(&hdac, DAC_CHANNEL_1, DAC_ALIGN_12B_R, 4095); // max
    /* USER CODE END WHILE */
    /* USER CODE BEGIN 3 */
}
```


5.3.1 DAC i liczniki

Wartości ustawiane na wyjściu DAC można równie dobrze ustawiać w metodach przerwań liczników, uzyskując dzięki temu oczekiwaną częstotliwość zmian sygnału (np. standardową częstotliwość 44100Hz). Możliwe jest także skonfigurowanie przetwornika DAC, aby automatycznie generował określone przebiegi:

Rysunek 5.6: Konfiguracja DAC umożliwiająca generowanie przebiegu trójkątnego

Na powyższym rysunku widać że sygnał będzie ustawiany według licznika TIM6, który należy również odpowiednio skonfigurować:

TIM6 Mode and Configuration				
Mode				
Activated				
One Pulse Mode				
Configuration				
Reset	Configuration			
🥝 User Constants 🛛 📀 NVI		IC Settings	🥺 DMA Settings	
⊘ Parameter Settings				
Configure the below parameters :				
Q Search (CrtI+F) ③ ④				0
✓ Counter Settings				
	Prescaler (PSC - 16	bits value)	0	
	Counter Mode		Up	
	Counter Period (Auto	Reload Re	3	
	auto-reload preload		Disable	
✓ Trigger Output (TRGO) Parameters				
	Trigger Event Selection	on	Update Event	

Rysunek 5.7: Konfiguracja licznika TIM6

Po takiej konfiguracji wystarczy tylko uruchomić licznik oraz DAC: HAL_TIM_Base_Start(&htim6); // uruchomienie licznika HAL_DAC_Start(&hdac, DAC_CHANNEL_1); // uruchomienie przetwornika

5.4 Ćwiczenie 1

Celem ćwiczenia jest zaobserwowanie zjawiska drgania sytków. W celu realizacji ćwiczenia należy:

- Zgłosić się do prowadzącego po przycisk oraz głośnik
- Uruchomić oscyloskop
- Podłączyć otrzymany przycisk do kontrolera (według oznaczeń: VCC-3V, GND-GND, S-PA2)
- Podłączyć sondę pod przycisk do linii PA2 (przy kontrolerze) oraz do GND (przy kontrolerze)
- Ustawić skalę pionową pscyloskopu na 500mV, poziomą na 20us, wyskalować odpowiednio sygnał (tak aby po wciśnięciu przycisku stan wysoki był ciągle widoczny) i ustawić wyzwalanie (trigger) na wartość około 1.5V:

Rysunek 5.8: Ustawienia oscyloskopu

- Aby zaobserwować drgania styku należy przełączyć oscyloskop w tryb Normal i kilkukrotnie wcisnąć przycisk. Oscyloskop pokaże miejsce w którym sygnał przechodzi przez wartość ustaloną w wyzwalaczu
- Sprawdzić jak wyglądają przebiegi sygnału dla różnych skali osi poziomej (np. 100us, 1ms, 10ms). Wnioski zanotować w sprawozdaniu

5.5 Ćwiczenie 2

Celem ćwiczenia jest zaobserwowanie sygnału PWM. W celu realizacji ćwiczenia należy:

Skonfigurować dowolny licznik tak, aby generował sygnał PWM o częstotliwości 1kHz. Pamiętać, że częstotliwość PWM to:

$$czestotliwosc = \frac{PCLK}{(PSC+1) \cdot (Counter_Period+1)}$$
(5.1)

przy czym PSC i Counter_Period są liczbami 16 bitowymi, a PCLK to domyślnie 16000000Hz

- Należy również ustawić odpowiednią wartość Pulse licznika (na połowę wypełnienia sygnału) i rozpocząć działanie licznika metodą HAL_TIM_PWM_Start
- Podpiąć sondę do sygnału PWM generowanego przez licznik i zaobserwować go na oscyloskopie
- Sprawdzić czy zaobserwowana częstotliwość zgadza się z obliczoną
- Do linii generującej sygnał podpiąć "+" głośnika, podpinając "-" do GND na kontrolerze
- Dodać kod w pętli głównej while zmieniający co sekundę wartość Counter_Period (rejestr TIMx->ARR, x - zastąpic numerem licznika) na różne wartości zmieniając tym samym częstotliwość dźwięku. Pamiętać aby wypełnienie pulsu wynosiło połowę: TIMx->CCR1 = TIMx->ARR / 2;

5.6 Čwiczenie 3

Celem ćwiczenia jest zaobserwowanie sygnału z przetwornika DAC. W celu realizacji ćwiczenia należy:

- Skonfigurować przetwornik DAC oraz wybrany licznik tak jak w punkcie 5.3.1
- Sprawdzić na oscyloskopie częstotliwość generowanego sygnału (w przypadku problemów funkcją Auto, oscyloskop ustawić samodzielnie dobierając odpowiednio skale poziomą i pionową)

- Policzyć częstotliwość ze wzoru (5.1), a wynik podzielić przez 8192 (tyle sygnałów pośrednich jest generowanych przez DAC przy sygnale trójkątnym od 0 do 4095 i od 4095 do 0)
- Porównać obie częstotliwości i zanotować wnioski w sprawozdaniu

5.7 Ćwiczenie 4 (opcjonalne)

Celem ćwiczenia jest zaobserwowanie sygnału z przetwornika DAC. W celu realizacji ćwiczenia należy:

- Skonfigurować przetwornik DAC oraz wybrany licznik tak, aby generował przerwania o częsotliwośi 44100Hz
- W przerwaniach zmieniać wartość sygnału DAC w taki sposób, aby otrzymać sygnał sinusoidalny (wykorzystać dodatkową zmienną globalną i na jej podstawie korzystać z funkcji sinus).
- Sprwadzić faktyczną częstotliwość funkcji sinus na oscyloskopie i zanotować wnioski