Systemy Wbudowane

Laboratorium 6:

Wykorzystanie CRC, RNG, RTC i praca samodzielna

6.1 CRC i RNG

Płytki STM32F429ZI posiadają wbudowany sprzętowy generator sumy kontrolnej CRC oraz generator liczb losowych RNG. W celu ich włączenia wystarczy aktywować odpowiednie elementy w konfiguratorze:

Rysunek 6.1: Aktywacja CRC

Biblioteki HAL posiadają zestaw metod pozwalających na wykorzystanie CRC i RNG. Aby je odnaleźć samodzielnie wystarczy po wygenerowaniu kodu wpisać HAL_CRC i wcisnąć Ctrl+Spacja:

Rysunek 6.2: Podpowiedź z listą metod dotyczących sprzętowego generatora CRC

Na Rysunku 6.2 można zauważyć metodę $HAL_CRC_Calculate(...)$; oraz parametry jakie przyjmuje i zwraca. Pierwszym z nich jest referencja do obiektu (a właściwie struktury) związanego z generatorem (&hcrc), drugim jest bufor z danymi dla których będzie obliczona suma CRC, trzecim jest długość bufora, zwracana przez metodę jest natomiast wartość nieujemna całkowita 32-bitowa (typu uint32_t). Można samemu wywnioskować że taka metoda będzie właściwa do liczenia sumy kontrolnej i wykorzystać ją następująco:

Rysunek 6.3: Wykorzystanie sprzętowego generatora sumy kontrolnej CRC

Aby otrzymać podgląd wartości zmiennej tak jak na rysunku powyżej, należy uruchomić program w trybie debugowania (Run \rightarrow Debug) umieszczając w odpowiednim miejscu pułapkę (opis debugowania - Laboratorium 1).

Rysunek 6.4: Włączenie trybu debugowania

6.2 RTC

RTC (*ang. Real Time Clock*) czyli zegar czasu rzeczywistego jest podzespołem zliczającym czas w tle. Zasada działania RTC jest taka, aby umożliwiał on liczenie czasu, nawet gdy główne źródło zasilania płytki jest odłączone (źródłem zasilania staje się wówczas bateria, podobnie jak ma to miejsce np. w płytach głównych komputerów). Niestety płytki rozwojowe STM32F429ZI nie są domyślnie wyposażone w taką baterię (istnieje jednak możliwość jej podłączenia), a więc zliczany czas zegara RTC nie zostaje zapamiętany po odłączeniu zasilania. Podstawowa konfiguracja RTC wymaga włączenia następujących opcji:

Q ~	٢	RTC Mode and Configuration	
Categories A->Z	_ P	Mode	
Timers ~		Activate Clock Source	
÷		Activate Calendar	
✓ RTC		Alarm A Disable	7
TIM1 TIM2	I.	Alarm B Disable	-
TIM3		WakeUp Disable	/

Rysunek 6.5: Aktywacja RTC

RTC można także skonfigurować ustawiając w nim alarmy (Rysunek 6.5), format daty oraz godzinę początkową (ustawianą w przypadku utraty zasilania lub wgrania programu):

🔗 Parameter Settings 🛛 🔗 User Constants				
Configure the below parameters :				
Search (Citl+E) O		8		
Ceneral		U U		
Hour Format	Hourformat 24			
Asynchronous Predivider value	127			
Synchronous Predivider value	255			
✓ Calendar Time				
Data Format	BCD data format			
Hours	10			
Minutes	15			
Seconds	0			
Day Light Saving: value of hour adjust Daylightsaving None				
Store Operation	Storeoperation Reset			
$ \sim $ Calendar Date				
Week Day	Monday			
Month	January			
Date	1			
Year	0			

Rysunek 6.6: Konfiguracja RTC

Po wygenerowaniu kodu ustawiona konfiguracja RTC znajduje się w metodzie $MX_RTC_Init(void)$;. Znajduje się tam także kod ustawiający godzinę i datę (można go tymczasowo zakomentować aby sprawdzić czy zegar działa niezależnie od resetu programu) i sekcja kodu przeznaczona do sprawdzania kopii zapasowej czasu zegara.

Analogicznie do przykładu z CRC, wciśnięcie Ctrl+Spacja rozwinie listę metod biblioteki HAL dla danego elementu:

Rysunek 6.7: Podpowiedź z listą metod dotyczących RTC

Dopisek Ex (*ang. Extended*) oznacza listę metod dodatkowych, właściwe metody znajdują się w tym przypadku na dole listy:

/* USER	CODE BEGIN 3 */
HAL_RTC	
} /* USER CO	• HAL_RTC_GetAlarm(RTC_HandleTypeDef * hrtc, RTC_AlarmType ^
,	• HAL_RTC_GetDate(RTC_HandleTypeDef * hrtc, RTC_DateTypeDef * sDate, uint32_t Format) : HAL_StatusTypeDef
	HAL_RTC_GetState(RTC_HandleTypeDef * hrtc) : HAL_RTCState1
** * Obrief C	 HAL_RTC_GetTime(RTC_HandleTypeDef * hrtc, RTC_TimeTypeD

Rysunek 6.8: Podpowiedź z listą metod dotyczących RTC - metody bazowe

Na Rysunku 6.8 widać metodę GetTime, powinna ona pozwolić zwrócić czas z RTC, posiada ona jednak szereg parametrów wejściowych w postaci struktur. Aby dowiedzieć się więcej o metodzie należy przytrzymać przycisk Ctrl i kliknąć na nazwę metody:

```
HAL_StatusTypeDef HAL_RTC_GetTime(RTC_HandleTypeDef *hrtc, RTC_TimeTypeDef *sTime, uint32_t Format)
{
    uint32_t tmpreg = 0U;
```

```
/* Check the parameters */
assert_param(IS_RTC_FORMAT(Format));
/* Get subseconds structure field from the corresponding register */
sTime->SubSeconds = (uint32_t)(hrtc->Instance->SSR);
/* Get SecondFraction structure field from the corresponding register field*/
sTime->SecondFraction = (uint32_t)(hrtc->Instance->PRER & RTC_PRER_PREDIV_S);
```

Rysunek 6.9: Metoda *HAL_RTC_GetTime(...);*

Analogicznie można postąpić z typami struktur i np. funkcją IS_RTC_FORMAT:

```
      800
      #define IS_RTC_FORMAT(FORMAT) (((FORMAT) == RTC_FORMAT_BIN) || ((FORMAT) == RTC_FORMAT_BCD))

      801
      #define IS_RTC_YEAR(YEAR) ((YEAR) <= 99U)</td>

      802
      #define IS_RTC_MONTH(MONTH) (((MONTH) >= 1U) && ((MONTH) <= 12U))</td>

      803
      #define IS_RTC_DATE(DATE) ((UEEKDAY) (((UEEKDAY) == RTC_WEEKDAY_MONDAY) || \
```

```
Rysunek 6.10: Metoda IS_RTC_FORMAT(...);
```

Podpowiedzi są dostępne także przy najechaniu kursorem na typy danych:

HAL_StatusTypeDef HAL_RTC_GetTime(RTC_HandleTyp	peDef *hrtc, RTC_TimeTypeDef *sTime
<pre>/** * @brief HAL Status structures definition */</pre>	
typedet enum { HAL_OK = 0x00U, HAL_ERROR = 0x01U, HAL_BUSY = 0x02U, HAL_TIMEOUT = 0x03U	prresponding register */ e->SSR);
<pre>} HAL_StatusTypeDef; Press 'F2' for focus /* Get the TR register */ tmpreg = (uint32 t)(hptc=)Instance=)TP & PTC</pre>	TR RESERVED MASK):

Analizując kod powyższej metody i jej składowych można już napisać poprawny kod umożliwiający jej wywołanie:

```
HAL_StatusTypeDef result;
RTC_TimeTypeDef sTime;
result = HAL_RTC_GetTime(&hrtc, &sTime, RTC_FORMAT_BIN);
if (result == HAL_OK) {
    uint8_t sec = sTime.Seconds;
    uint8_t min = sTime.Minutes;
    uint8_t hou = sTime.Hours;
}
```

6.3 Ćwiczenie 1

Celem ćwiczenia jest wykorzystanie generatora liczb losowych RNG. W celu realizacji ćwiczenia należy:

- Utworzyć nowy projekt i skonfigurować generator RNG (wystarczy sama jego aktywacja)
- Sprawdzić dostępne metody z biblioteki HAL powiązane z generatorem RNG. Odnaleźć metodę generującą liczbę losową
- Wygenerować liczbę losową i wyświetlić jej podgląd w trybie debugowania

6.4 Ćwiczenie 2

Celem ćwiczenia jest wykorzystanie przetwornika ADC. W celu realizacji ćwiczenia należy:

- Poprosić prowadzącego o potencjometr i głośnik
- Przy pomocy konfiguratora graficznego skonfigurować przetwornik ADC2 wybierając dowolny kanał (od IN0 do IN15)
- Sprwadzić jaka linia sygnału jest wykorzystywana przez dany kanał
- Podpiąć potencjometr do płytki, pamiętając aby sygnał OUT potencjometru podłączyć pod znalezioną linię sygnału
- Wygenerować kod programu, wyszukać metodę HAL_ADC... odczytującą wartość z przetwornika ADC i przypisać wartość do dowolnej zmiennej (należy pamiętać że przed każdym odczytaniem wartości z przetwornika należy uruchomić rozpoczęcie konwersje metodą HAL_ADC_Start(...); i po jej wywołaniu odczekać około 15ms: HAL_Delay(15);)
- Wykorzystać odczytaną wartość i na jej podstawie ustawić ARR sygnału PWM wybranego licznika (TIMx->ARR, gdzie x oznacza numer licznika, pamiętać ustawić wypełnienie puslu TIMx->CRR1 na połowę TIMx->ARR)
- Licznik skonfigurować ustawiając PSC=15, Counter Period=1000 oraz Pulse=10 (należy pamiętać o uruchomieniu licznika metodą HAL_TIM_PWM_Start(...);)
- Sprawdzić czy operowanie potencjometrem rzeczywiście wpływa na generowany dźwięk, w razie problemów podejrzeć odczytywane wartości z przetwornika ADC w trybie debugowania

Dla tego laboratorium należy przygotować sprawozdanie zawierające odpowiednie kody źródłowe oraz zdjęcia przedstawiające działanie programów (dla wszystkich ćwiczeń)