
Content-Based Image Retrieval by Dictionary of Local Feature
Descriptors

Patryk Najgebauer, Tomasz Nowak, Jakub Romanowski, Marcin Gabryel,
Marcin Korytkowski and Rafał Scherer, Member, IEEE

Abstract— This paper describes a novel method of image key-
point descriptor indexing and comparison used to speed up the
process of content-based image retrieval as the main advantage
of the dictionary-based representation is faster comparison of
image descriptors sets in contrast to the standard list repre-
sentation. The proposed method of descriptor representation
allows to avoid initial learning process, and can be adjusted
taking into consideration new examples.

The presented method sorts and groups components of
descriptors in the process of the dictionary creation. The
ordered structure of the descriptors dictionary is well suited
for quick comparison of images by comparing their dictionaries
of descriptors or by comparing individual descriptors with the
dictionary. This allows to skip a large part of operations during
descriptors comparison between two images.

In contrast to the standard dictionary, our method takes into
account the standard deviation between the image descriptors.
This is due to the fact that almost all descriptors generated
for the points indicating the same areas of the image have
different descriptors. Estimation of the similarity is based on the
determined value of the standard deviation between descriptors.

We assume that proposed method can speed up the process
of descriptor comparison. It can be used with many solutions
which require high-speed operations on the image e.g. robotics,
or in software which computes panoramic photography from
scrap images and in many others.

I. INTRODUCTION

Image comparison and retrieval by their content is a com-
plex process. Algorithms for content-based image retrieval
have to be immune to change of scale, to image rotation
and other transformations. Developers of image comparison
methods try to imitate human perception process. The main
problem is the difference between the perception of images
by humans and computers. Human perception is focused
on remembering the semantic description of the image with
avoiding image details. Humans remember events, actions
and objects represented by the images, but often they are
not able to precise reproduce the images from memory. It is
possible by human knowledge and skills learned from birth.
Computer interpretation of images relies on a high number of
details and computer algorithms are not able to semantically
describe images because they lack imagination. On the other
hand, thanks to their high accuracy, in many cases specialized
algorithms such as facial and fingerprint recognition are
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better than humans as we need specialized knowledge and a
long time to achieve the same goal [1][3][4][9][10][13].

In general-purpose applications, algorithms based on im-
age keypoints are often used for comparing images [7][14].
Unfortunately, these methods generate large amount of data,
which must then be compared between other sets of data
from other images. This requires large computational burden
during keypoint generation and their comparison process.
Keypoints are areas of the image of specific details that are
in contrast with the rest of the image. Thanks to this concept
most of the picture can be automatically omitted and we
can focus only on the essential details. Keypoints also create
some relationships with each other by distance, orientation
and size which then can determine translation between com-
pared similar images, as well as rotation and displacement
of objects included in the image. Some disadvantage is the
fact that often some of the points between similar images do
not overlap thus it cannot be assumed that the relationship
between keypoints is invariant.

One of the most popular algorithms used to generate image
keypoints is the SIFT algorithm (Scale-Invariant Feature
Transform) [11]. The newer version of SIFT is the SURF
(Speeded Up Robust Features) algorithm [2][8]. SURF is
less accurate, but faster than SIFT. The method proposed
in this paper is based on keypoints that were generated
with the help of the SURF algorithm. The main features
of each generated keypoint are: position, orientation, size,
and descriptor. Algorithms for determining keypoints apply
a mask defining the local extremes of the image. Such an
action is typical for the algorithms of blob detection [15].
The image is analyzed many times, and in each subsequent
step, the size of the mask is increased, creating the so-
called, pyramid. This allows to identify keypoints regardless
of their scale. The important advantage of the algorithm is a
substantial acceleration with respect to the previous solutions,
due to several improvements. The previous solutions used
Gaussian mask which requires the addition of all the pixels
repeatedly with a specified coefficient. The SURF algorithm
has been improved by using the so-called integral image that
allows a quick way to determine the sum of the pixels in
a given area. This structure is represented by the sum of
pixels in any rectangular area of the input image I(1). This
also has a negative impact on the accuracy of the designated
descriptors, since adopted simplified masks that causes a
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minor deviation in rotation and position of keypoint.

I∑(x, y) =

i≤x∑
i=0

j≤y∑
j=0

I(x, y) (1)

where I is a processed image, I∑(x, y) - the sum of all
pixels in the image. Calculation of the sum of the pixels in
the selected area of the image (integral image) is described
by (2) ∑

= A−B − C +D (2)

where A, B, C, D values are the sum of pixels in the selected
point. Finally, the algorithm for each keypoint generates its
descriptor and its orientation. Determined orientation of the
keypoint allows to generate similar descriptors of points
regardless of the global orientation of the entire image.
Keypoints descriptor is array of values that represent the
changes of local gradient around is keypoint.

Vsub =
[∑

dx,
∑

dy,
∑
|dx|,

∑
|dy|

]
(3)

The primary descriptor generated by an SURF algorithm is
made with 64 values. Each successive group of 4 values
of descriptor creates a matrix of size 4 x 4 which extends
over the keypoint (Fig. 1). Each group is the sum of Haar
wavelets in x and y axis, this allows to efficiently describe
the local gradient (3). Objects recognition based on keypoints

Fig. 1. Descriptor structure, 4x4 matrix of 4 value from sub region [2]

and their descriptors is done by matching all keypoints for
two different images. Keypoints are usually applied to search
for exactly the same object in another picture, e.g. while
tracking an object on a video sequence. The algorithms
which work on the key points allow to search similarity in
another image even if it is rotated or partially hidden [6]. This
paper proposes a new method for image keypoint descriptors
indexing and comparison and is organized as follows. Section
2 presents a description of the problem and Section 3 the
proposed method. Subsection 3.1 presents the process of dic-
tionary creation from a descriptor set. Subsection 3.2 presents
the base method of descriptor comparison (similar descriptors
extraction from a dictionary) with the dictionary. Subsection
3.3 presents an additional method for dictionary comparison
between two dictionaries (similar to set intersection). Section
4 presents experimental results of the method and the last
section concludes the paper.

II. PROBLEM DESCRIPTION

To properly compare similar descriptors we need to keep
the appropriate deviation tolerance between them. For ex-
ample, Table I presents the distribution of variation between
similar values of descriptor component (Fig. 2) of the total
standard deviation of 0.4743. For this example it can be
assumed that standard deviation does not exceed 0.5 for
similar descriptors. Increasing value of tolerance also re-
sults in possibility to create groups of similar descriptors.
Keypoints and their orientations presented in (Fig. 2) human

TABLE I
DIFFERENCES BETWEEN Vsub OF TWO SIMILAR KEYPOINTS DESCRIPTOR

Vsub 1 2 3 4

1 0.0000 0.0059 0.0031 −0.0047
2 −0.0098 0.0144 0.0349 0.0159
3 −0.0495 −0.0214 −0.0159 0.0079
4 −0.0770 −0.0062 −0.0120 −0.0173

consider to be identical, but if we take into account the
value of their descriptors, they are completely different. Each

Fig. 2. Image example with similar SURF keypoints with 0.47 value of
difference between descriptor components

of local feature detection methods (e.g. SURF or SIFT)
generates large amount of keypoints per image [12]. Most
disadvantages of such methods is the process of descriptor
sets comparison. During our experiments we tried to speed
up this process. The first and simplest method is generation
of hashes for the keypoint descriptors. Hash code is a simple
value that reduce large array of descriptor values to a short
form. In case of hash codes we noticed several problems,
mostly resulted from:

• Descriptors that values are located on the border be-
tween different hash codes.

• Randomly pick deviations of single values of descrip-
tors.

• Deviations resulting from micro changes of keypoint
position, orientation and scale.

• Distortion created from image noise.

After generating the keypoints of the compared images, they
were divided into two sets. Their number depends on the size
of the photos and the amount of details. Often for photos
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of size equal to 1280 x 800 pixels, the amount of gener-
ated keypoints exceed 1000 points. The simplest and often
used method of comparing the keypoints between images
is to compare each other, but with such a large number
of points that can require many long-running calculations.
For example, two sets consisting of a thousand keypoints
require one million comparisons. To reduce the number of
required comparisons of descriptors we can sort them. Most
of related works do not mention descriptors matching or only
use brute force. Most of works are also more focused on key-
points spatial relationships. Certain part of the related works
presents methods that reduce the number of comparisons but
these approaches need initial learning process and not allow
for latter extension of the structure. Most of them are based
on k-means [16][17]. In our work we tray to avoid an initial
learning process. The solution to the above problem will be
discussed further in this work.

III. METHOD DESCRIPTION

To speed up the process of descriptor comparison, the
presented method performs sorting and grouping of descrip-
tor components. Each of the SURF descriptors contains
64 components which are floating-point values. Processed
descriptor components create a structure similar to a dic-
tionary [5]. Similarly to the vocabulary dictionary, in our
method each descriptor is equivalent to a simple word.
In the proposed method each word is of similar length
and contains 64 elements of descriptors that is equivalent
to a vocabulary single character. The proposed method by
grouping of descriptors components allows to reduce the
total number of descriptor comparison between images. It
is achieved by a reduction of a total number of comparisons
in each step of the comparison of descriptor components.
Descriptors are omitted if their difference is greater than the
assumed threshold. The descriptor dictionary is created in a
similar way to the B-tree where each node has a reference
to the next nodes that corresponds to descriptor components.

A. Dictionary Creation

The presented method processes all descriptors and cre-
ates a dictionary from their components. Descriptors can
be inserted immediately after detection. Fig. 3 presents an
example of the descriptor list that contains only the first
five values and will be used to create a sample dictionary
from Fig. 5. From each component of the descriptor, a
dictionary character (node) is created. Character insertion
into dictionary is started from the first character created
from the first descriptor component. At first character are
compared with each child character of dictionary root until
value deviation is decreases. After that, if their deviation
exceed the given threshold then the character with all of
descendants characters is added into root child list in position
where comparing was ended. In other case, if the deviation
does not exceed the threshold, the method goes to the best
matched child and starts comparing their child with the next
character of inserting descriptors. Fig. 4 presents the process
of dictionary descriptors (words) adding. As we can see, the

descriptor number two (marked by red color) has similar a
tree character with the next added descriptor number tree
(marked by green color). In that case we group them by
adding a sub-word of added descriptors (green) as a child of
the last similar character element (red).

Fig. 3. An example of list of first five descriptors components used to
dictionary creation.

Threshold value used in the approach of dictionary cre-
ation is smaller (divided by 64) than the threshold used
in main dictionary comparison process, we also do not
compare entire descriptors (dictionary words) but only single
components (dictionary character). This is caused by the fact
that some sub-words which where grouped and assigned to
other words even if their deviation was nearest to exceed.
In that case these words were significantly different to their
original and later were wrong matched.

An example of dictionary creation process is presented
in Fig. 5. As we can see, to the first dictionary character
of descriptor number 2 are directly assigned only descriptor
number 5, but in entire dictionary this character represents
descriptors numbered from 2 to 6. Thanks to component
grouping we reduce the number of descriptor components
that have a similar value.

Fig. 4. An example of dictionary word comparison and grouping in the
process of dictionary creation.

This approach also speeds up the process of descriptors
index building, especially in the case of using a large number
of descriptors. Other data of keypoints such as position, size,
orientation is stored in the last character.

To better understand the structure of the descriptors dic-
tionary we can present it as a tree. Descriptors dictionary
represented as a tree has the same height dependent on the
length of the descriptor. In our case, height is 64 that is
equal to length of descriptor that are generated by the SURF
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Fig. 5. An example of dictionary fragment consisting of ten descriptors

algorithm. Each path from the root to a leaf represents a
single descriptor or their group, if all the values overlaps.
The leaves store data of the related keypoints.

B. Descriptors Comparison With The Dictionary

Comparison of descriptors can be performed in two ways,
first by comparing single descriptors with a dictionary and
second by comparing two dictionaries.

The first method works in a similar way to finding the
appropriate descriptor in the dictionary. This method works
in a similar way to the method that adds a new descriptor.
Components of the compared descriptor are compared with
the dictionary beginning from the first component. Only
components of the same level are compared. If similar com-
ponents to the compared descriptor are found in a dictionary
the method proceeds to the second stage and compares a sub
list of dictionary components with the second component
of descriptors. In each step, the value of total differences
between dictionary path and the compared descriptor is
increased. If this value exceeds the value of threshold, the
path is omitted and goes to the next similar component of
the dictionary. With each step the amount of total possible
comparison combination is reduced. If the method reaches
the last component, it returns the data of matched descriptors
and tries to find another one. Fig. 6 shows an example of

Fig. 6. Example of searching for a single descriptor in the dictionary

the descriptor comparison with the dictionary. The example
presents only a fragment of the descriptor structure. The
deviation in the example search between the descriptor, and
the most similar path of dictionary is about 0.25. In the

presented example we assumed that the threshold value is
0.5. If the deviation exceeds the threshold the searched
path is skipped. We marked by light gray background color
the components that were compared but they differences
exceeds the thresholds. By dark grey background color we
marked the components that matched the searched keypoint
descriptor. We can also notice that comparison is omitted in
five descriptors in the first dark gray components group as
they have similar components.

C. Comparing Two Descriptor Dictionaries

In the case when dictionaries are created for each image or
groups of images it is possible to compare whole dictionaries.
That approach speeds up the whole operation even for large
sets of keypoints. As it was mentioned earlier, dictionaries
organize and group the descriptors, what accelerates their
multiple utilization. Ordered structure of dictionaries allows
for fast determination of the common parts between dic-
tionaries instead of compare descriptor list with dictionary.
Example of comparison of two dictionaries is presented

Fig. 7. Example of two dictionaries comparison. Similar components
between dictionaries are marked by dark gray background color

in Fig. 7 where dark gray background denotes common
parts of first group of similar descriptors and light gray the
second group. In this approach we compare sorted data. The
main advantage of the first method is that components are
compared only once. We do not need to process them later
as it is in the case of multi comparison between a dictionary
and descriptors list.

IV. EXPERIMENTAL RESULTS

Experiments have been carried out on test images pre-
sented in Fig. 8. During the experiments we adopt the value
of the threshold deviation of descriptor equal to 0.5. To better
demonstrate the effect of the algorithm, images have been
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TABLE II
RESULTS OF DICTIONARY CREATION FROM FIG. 8

Image Fig. 8a Fig. 8b Fig. 8c Fig. 8d Fig. 8e Fig. 8f

No. of
key points 147 158 170 65 1538 1265

No. of
dictionary
words

123 125 137 63 1496 1256

No. of
component
groups

20 28 22 13 77 71

specially prepared. They were chosen to be similar to varying
degrees, thus we could obtain positive search results.

Table II presents experimental results of the algorithm to
build the dictionary. The table shows the differences between
the number of descriptors generated by the SURF algorithm,
and the amount of the corresponding words in the dictionary
of descriptors. We can conclude from first two rows of the
table that only 11% of the generated keypoints descriptors
are fully grouped in dictionary. This shows that about 11%
of the descriptors coincides with the other, that translates
to unnecessary processing of identical descriptors during
images comparison.

Table II tells us also about grouping of first components of
descriptors during dictionary creation. The last row contains
the number of first elements in the dictionary, which group
the first components of descriptors. As we see the first item
of the first dictionary (Fig. 8a) groups about 6 descriptors
and grows along with their quantity (for Fig. 8e there are
19 elements). This is related to the limited number of
combinations of groups depending on the threshold of the
maximum deviation between the descriptors.

Table III presents a summary of the results of the combi-
nation of comparisons for the objects shown in Fig. 8. The
result of each comparison are three values. The first value
is the number of matched (identical) descriptors between
two images. The next value is an approximate amount of
fully compared descriptors (number of compared components
divided by descriptor length), because presented method
does not compare the whole descriptors, but only their
components.

This approach presents in better way the relationship
between the number of comparisons made with the help
of the dictionary, and the standard, all-to-all comparison.
Number of comparisons without proposed improvements is
presented as the third value. We can conclude from Table III
that the number of comparison operations is substantially
reduced in our method, moreover the number also decreases
with increasing number of descriptors.

V. CONCLUSIONS

The paper concerned very important problem of modern
computer science that is checking the similarity of two or
even millions of images by their content. The most popular

Fig. 8. Images used in experimental results

TABLE III
EXPERIMENTAL DICTIONARY COMPARISON RESULTS BETWEEN IMAGES

(FIG. 8), VALUES: FINAL SIMILAR DESCRIPTORS, NUMBER OF

COMPARED DESCRIPTOR BY DICTIONARY, NUMBER OF COMPARED

DESCRIPTOR BY LIST (ALL TO ALL) METHOD

Image Fig. 8a Fig. 8b Fig. 8c Fig. 8d Fig. 8e

Fig. 8b
55
323
19434 - - - -

Fig. 8c
27
327
20910

87
435
21250 - - -

Fig. 8d
7
126
7995

7
162
8125

4
149
8905 - -

Fig. 8e
19
2373
18974

36
3004
192250

19
2558
210706

3
1519
96894 -

Fig. 8f
0
1913
155595

0
2401
158125

0
2038
173305

0
1210
79695

210
8404
1892440

method nowadays is generation of image keypoints and
comparing them in brute force of all-to-all manner, what
is extremely time-consuming. In the paper we presented a
novel method of fast comparing images based on a dictionary
structure. As we can see on the basis of experiments, create
a dictionary file descriptors allows to significantly reduce the
number of required operations during image comparison. For
example, comparing pictures Fig. 8f and Fig. 8e showed 205
common descriptors. To designate the common descriptors
it was enough to perform 8404 full descriptor comparisons,
which represents only 0.4% of the operations that are needed
in case of comparing not sorted descriptors. Our solution
can be very useful for comparing a large group of pictures
in order to determine their similarities. Dictionary does not
require a large amount of memory, for sample image in
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Fig. 8f, 1.256 descriptors were generated, which took about
4 KB of memory.

The presented method can be applied as a standalone
content-based image retrieval system that can speed up
grouping images by similarity or searching image with a
similar content. The proposed method can be also used as a
temporary database that process e.g. video material to search
for similar scenes.
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