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Abstract. The presented paper describes a successfully parallel imple-
mentation of the statistical reconstruction method based on the
continuous-to-continuous model using both CPU and GPU hardware
approaches. Data were obtained from a commercial computer tomogra-
phy device which were saved in DICOM standard file. The implemented
reconstruction algorithm is formulated taking in two consideration the
statistical properties of signals obtained by x-ray CT and the continuous-
to-continuous data model. During our experiments, we tested the speed
of the implemented algorithm and we optimized it in terms of the criti-
cal parameter which is very important regarding the potential use of this
solution in clinical practice.

Keywords: Image reconstruction from projections ·
Statistical iterative reconstruction algorithm · Computer tomography

1 Introduction

The main challenge in x-ray computed tomography is to improve the resolution
of reconstructed images and/or decrease the x-ray dose absorptions by a patient
during examination, while maintaining the quality of the CT images obtained,
and therefore this is a barrier to the development of this wildly-spread medical
imaging technique. It is why the statistical reconstruction methods are being so
intensively developed. In the statistical approach, signal processing is adaptive to
the statistic of measurements present in a given image technique and in this way,
we can reduce the dose absorbed by a patient during an examination (see e.g. in
[1,2]). This paper presents our investigations on this challenge. We present hire
results obtained using implementations of statistical reconstruction algorithm
based on a continuous-to-continuous data model. Because the time is a crucial
parameter in medical practice, it is very important to perform a whole recon-
struction procedure in a limited time, i.e. within a few seconds. To make this
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time as short as possible we strived to implement as parallel realizations of this
algorithm using a multi-thread assembler working on AVX512 vector registers
and a few different GPUs accelerators.

2 Statistical Reconstruction Algorithm

Our reconstruction method is based on the well-know maximum-likelihood (ML)
estimation [3–5]. In most cases, the objective in those solutions is devised accord-
ing to a discrete-to-discrete (D-D) data model. However, this scheme has some
very serious drawbacks, namely: the statistical reconstruction procedure based
on this methodology necessitates simultaneous calculations for all the voxels, in
the range of the reconstructed 3D image, the size of the forward model matrix
A is huge, and this makes it often necessary to calculate them in every itera-
tion of the reconstruction algorithm. In this case, the reconstruction problem
is extremely ill-conditioned, and it is necessary to introduce an a priori term
(often referred to in the literature as a regularization term) into the objective,
and this leads to the use of the MAP model. We propose here an optimization
formula which is consistent with the C-C data model, in the following form:
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where μ̃(x, y) is an image obtained by way of a back-projection operation,
obtained theoretically in the following way:
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where ph(β, αh
ψ, zk) are measurements carried out using a spiral cone-beam scan-

ner, Rfd is the SDD (Source-to-Detector Distance), and the coefficients hΔi,Δj

can be pre-calculated according to the following relation:

hΔx,Δy =
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and int(Δs) is an interpolation function.
The presence of a shift-invariant system in the optimization problem implies

that this system is much better conditioned than the least squares problems
present in the referential approach [6]. It is necessary for a computer implemen-
tation of the above C-C model to discretization Eqs. (1)–(3). After the process
of discretization Eqs. (1)–(3) can be presented in the following form (4)–(6)
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where: Δx,y, is a distance between pixels in a reconstruction image; Δi = |̄i− i|,
Δj = |j̄ − j|, are distances between pixels in the reconstruction images in the x
and y directions, respectively; μ̃(xi, yj) is a discrete form of an image obtained
by the way of back-projection operation, obtained in the following way:

μ̃(xi, yj) � ΔαΔβ

∑
ψ

∑
l

ph(βl, α
h
ψ, zk)

Rfd√
R2

fd + z2k

intlin(Δβ) (5)

where ph(βl, α
h
ψ, zk) are measurements carried out using a real spiral cone-beam

scanner (see e.g. [7]); Rfd is the SDD (Source-to-Detector Distance); Δα is an
angular raster between angles of projections; Δβ is an angular distance between
the radiations detectors in columns of the detector area; intlinΔβ is a linear inter-
polation function; (k, l) indicates a positions of a given detector in the detector
area; and the coefficients hΔi,Δj can be pre-calculated according to the following
relations:

hΔi,Δj = Δα

∑
ψ

int(Δi cos ψ ∗ Δα + Δj sin ψ ∗ Δα) (6)

The most important thing in this approach is the possibility of an imple-
mentation of the fast fourier transform (FFT) algorithm to solve optimization
problem (4) in an iterative procedure. The main aim of our paper is to present
the acceleration of the performers of the calculations regarding this application
of FFT using its parallel realizations (see e.g. [8]).

The conception of full 3D reconstructions algorithm proposed in this paper is
based on one of the principal reconstruction methods devised for the cone-beam
spiral scanner, i.e. the generalized FDK approach to the reconstruction problem.

The statistical reconstruction algorithm formulated by us consists of two
steps, namely: a back-projection operation represented by relation 5 and an
iterative reconstruction procedure described to formula 4. The whole statistical
reconstruction algorithm, including of implementation of the FFT, proposed by
us is the depicted in Fig. 1.

3 Results of Reconstruction Images

In Fig. 2, we present the reconstructed image obtained using the presented here
method.

The above showed result demonstrates that the algorithm works properly,
and the reconstructed image contains a lot of details while minimizing the noise
overhead. Thanks to this solution, it will be possible to see a potential threat to
the patient’s life or reduce the dose of x-ray radiation in order to obtain the same
quality of the diagnostic images in comparison to the existing reconstruction
methods.
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Fig. 1. An image reconstruction algorithm for the cone-beam computer tomograph
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Fig. 2. Reconstructed images from the cone-beam computer tomograph with spiral
pitch 0.6 after 20000 iterations.

4 Hardware Description and Time Results

Here we present our results regarding the time of the performance of the
reconstruction process which is required to receive the result presented in
Sect. 3. Our hardware platform is a computer with processor Intel i9-7900X
BOX, mainboard ASUS TUF X299 MARK 2, LGA 2066, X299, with 32 GB
RAM DDR4/3200 MHz. This equipment is managed by the operating system:
Microsoft Windows 10 professional 64 bit. On this system is running our program
which we describe in Sect. 2.

In Table 1, we show time result for the application which is working only on
CPU. This version of the application is developed in Assembler which uses special
vector registers (AVX 512), which are available only in top models of mainstream
Intel’s processors, or in servers processors which are very expensive compared to
mainstream processors. The discrepancy between standard deviation varies with
CPU because the operating system takes some of the resources to maintain the
computer.

In Table 2, we show time result for the application which is working only on
GPU accelerators. We could compare those accelerators, and draw conclusions
that the program is very stable about the time of performance because the
deviation is extremely small. Additionally, the application it is very susceptible
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to parallelization because the time of the one iteration is getting the smaller the
more CUDA Cores are assembled in GPU Accelerator.

The situation can be much better in future Graphics Cards which will have
more CUDA cores. The border of its is approximate 130 thousand CUDA cores,
so it is about 25 square more than today have the best graphics card from Nvidia
Company (Titan V).

Table 1. Obtained results regarding the time of the performance of the reconstruction
procedure using a multi-threading CPU, i.e. Intel i9-7900X (10-cores, 20-threads). An
application created in the assembler programming language with multithreading.

Threads: 4 8 10 16 20

Avg. time 30000 [ms] 63 724,36 33 571,42 29 836,34 30 532,14 27 905,62

Avg. time 20000 [ms] 42 482,91 22 380,95 19 890,89 20 354,76 18 603,75

Avg. time 10000 [ms] 21 241,45 11 190,47 9 945,45 10 177,38 9 301,87

Time/1 iteration [ms] 2,124145 1,119047 0,994545 1,017738 0,930187

HT effectiveness - - - 0,909468 0,935290

Median for 30000 63 694 33 542,5 29 800 30 566 27 854

Deviation std. 135,69 117,32 217,58 193,88 391,76

Table 2. Obtained results regarding the time of the performance of the reconstruction
procedure using different models of GPU accelerator. An application created in the
CUDA programming language.

GPU MSI GTX 1050 ASUS GTX 1080 Ti nVidia Titan V

Avg. time 30000 [ms] 2 562 175,10 49 699,71 28 858,40

Avg. time 20000 [ms] 170 845,28 33 132,52 19 224,48

Avg. time 10000 [ms] 85 467,24 16 593,00 9 616,75

Time/1 iteration [ms] 8,540583 1,656657 0,961947

Median for 30000 256 229,55 49 703,68 28 861,24

Deviation std. 0,160806 0,310476 0,010239

5 Conclusion

We have shown that the statistical approach to the image reconstruction problem
based on the continuous-to-continuous data model, which was originally formu-
lated for scanners with parallel beam geometry, can be also utilized in helical
CT scanners. Computer simulations have been performed, which prove that our
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reconstruction method is very fast, mainly thanks to the use of an FFT algo-
rithm. The computational complexity for the proposed reconstruction algorithm
is proportional to 8I2 log2 (2I), wherein it is approximate I4 operations for the
referential approach based on the discrete-to-discrete data model. Thanks to the
parallel implementations of the proposed method, the whole reconstruction pro-
cedure takes about 7 s regarding a single image, what is absolutely acceptable
from the clinical point of view (the obtained images are with satisfactory quality
with strongly suppressed noise). It is worth to note that for the referential recon-
struction method doctors obtain the first diagnostic CT images after 10–90 min.
However, computational intelligence can find their application in reconstruction
techniques (see e.g. in [9–19]).
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