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Abstract. This paper is concerned with the originally formulated 3D
statistical model-based iterative reconstruction algorithm for spiral cone-
beam x-ray tomography. The conception proposed here is based on a
continuous-continuous data model, and a reconstruction problem is for-
mulated as a shift invariant system. This algorithm significantly improves
the quality of the subsequently reconstructed images, so allowing a de-
crease in the x-ray dose absorbed by a patient. The analytical roots
of the algorithm proposed here permit a decrease in the complexity of
the reconstruction problem in comparison with other model-based itera-
tive approaches. In this paper, we proved that this statistical approach,
originally formulated for parallel beam geometry, can be adapted for he-
lical cone-beam geometry of scanner, with the direct use of projections.
Computer simulations have shown that the reconstruction algorithm pre-
sented here outperforms conventional analytical methods with regard to
the image quality obtained.
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1 Introduction

Nowadays, the most significant problem in medical computer tomography (CT)
is the development of image reconstruction algorithms from projections which
would enable the reduction of the impact of measurement noise on the quality
of tomography images. It is argued that x-ray radiation is harmful to the health
of patients being examined because it can lead to many serious illnesses |1],
and this therefore creates a barrier to the development of this x-ray medical
imaging technique. This kind of approach is intended to improve image qual-
ity and, in consequence, reduce the dose of X-ray radiation while at the same
time preserving an appropriate level of quality in the tomography images. The
concept has found its application in the form of statistical reconstruction al-
gorithms. One of the most interesting from the scientific and practical point
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of view, an approach, called MBIR (Model-Based Iterative Reconstruction), is
presented in publications like [2], [3] and [4], where a probabilistic model of
the measurement signals is described analytically (for more details see also [5]
and [6]. The objective in those solutions was devised according to a discrete-
discrete (D-D) data model (consequently, in 2010, this development had its de-
but under its commercial name Veo - CT Model-Based Iterative Reconstruc-
tion [7], [8]). This scheme has been selected in this case for one very obvious
reason - the measurement noise can be modelled relatively easily, because each
measurement is considered separately. Such a scheme adds significant calcula-
tive complexity to the problem. The time for image reconstruction becomes
difficult from the practical point of view. For instance, if the image resolution
is assumed to be I x I pixels, the complexity of the problem is of the level of
Ix Ix number_of measurements x number _of cross — sections (in 3D to-
mography); a multiple of I to the power of four in total.

The difficulties mentioned above connected with the use of an methodology
based on the D-D data model can be decreased by using a strategy of recon-
structed image processing based on a continuous-continuous (C-C) data model.
In previous papers we have shown how to formulate reconstruction problem con-
sistent with the C-C mode and with the maximum-likelihood (ML) methodol-
ogy for parallel scanner geometry [9], [10] and [11]. This strategy has been used
for fan-beams [12], and finally for the spiral cone-beam scanner [13] and [14].
However, an approach to the reformulation of the reconstruction problem from
parallel to real scanner geometries, called rebinning, was applied there. Much
more popular 3D reconstruction methods, which are implemented in practice,
are FDK (Feldkamp)-type algorithms that use projections obtained from spiral
cone-beam scanners directly (see e.g. [15]). In this paper, we present a mathe-
matical derivation of a method for the direct (i.e. without rebinning) adaptation
of spiral cone-beam projections to the statistical analytical reconstruction algo-
rithm originally formulated by us.

2 Adoption of the 2D Analytical Approximate
Reconstruction Problem to the Helical Cone-beam
Projections

Taking into consideration the definition of the two-dimensional inverse Fourier
transform, and the frequential form of the relation between the original image
of a cross-section of an examined object represented by function u (z,y) and the
image obtained after the back-projection operation fi (x,y), we obtain:

(o)
—00 —
which, after converting to polar coordinates and using the projection slice the-
orem (taking into account a full revolution of the projection system), takes the

1

M (f1, f2) 27wt R9)qp, df,, (1)

8\3



Iterative Statistical Reconstruction Algorithm 57

form:
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Then, after transferring the projections into the spatial domain, and arranging
the right hand side of the formula and changing the order of integration, we get
the following formula:
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where pP (s, aP) are projections obtained in a hypothetical parallel scanner (after
interpolation).

Next, after converting the attenuation function into polar coordinates, we
obtain:
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In our considerations, we should also take into account the application of the in-
terpolation function used during the back-projection operation, which should be
placed appropriately (a frequency representation of this function) in the formula
above, as follows:

ﬁ(m,y):% / / / INT (f)pP (s, o) e2mflreosle?=d)=sl gopgsqf.  (5)
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After suitable transformation we obtain a relationship for the fan-beam image
reconstruction method:
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where pf (ﬁ, af ) are projections obtained in a hypothetical fan-beam scanner,
and ) )
i= (zcosal +ysinal)” + (Ry +asinal —ycosal)™. (7)

There is a several serious drawbacks associated with the use of the fan-beam
reconstruction method formulated like this. It stems from the dependence of
equation (6) on the parameter @, which poses certain practical problems when
carrying out the calculations during the reconstruction process. Instead of a sim-
ple formula for the convolution kernel, it now becomes necessary to determine a
different form of the kernel for every point of the object’s cross-section. This is
because u represents the distance of the point (7, ¢) from the radiation source.
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Therefore, by changing the angle o, we also change . The appropriate adjust-
ment is based on a term in equation (6), which is reproduced here in a suitably

amended form:
o0

int (s) = / INT (f) /2 Fisin(B=5) gy, (8)
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In this equation, the integration is carried out with respect to the frequency f.
The next step will be to make a substitution for f, using the following expression:
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If at the same time we change the limits of integration, the convolving function
will be modified to:

ff
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Unfortunately, even here we encounter problems caused by the dependence of
the cut-off frequency fof on the parameter 4. On the other hand, if we were to
establish a constant value for f({ it would mean that the reconstruction process
for the point (r,¢) would have a different resolution (determined by the value
of the cut-off frequency fo) for every angle af. However, if we put aside the
assumption of uniform resolution for the resulting reconstructed image, then, by

manipulating the values u and fy, the varying value of fof can be fixed as:
1
=t = —— . 12

Let us assume that we apply a linear interpolation function in formula (6). The
frequency form of the linear interpolation function is given by this formula:

sin® (mfAs)
(WfAS)Q .

Taking into account in the formula (10) the proposed interpolation function
given by (13), we obtain the following relation:

INTL(f) = (13)
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where A, = fo/ f({ , and next, bearing in mind relations (12), it leads immediately

to:
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Finally, if we assume that Ag = 1, it gives

int] (9) = —E—ints (5). (16)
where
inty, (B) = { 2 (1 - l_l) for |5] < Ag (17)
0 for |3] > Ag
In consequence, returning to the formula (8), we obtain
21 Bim
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Fortunately, we can linearize relation (18) by considering expressions inside the
integration, namely == Zﬁ.

In the case of linear interpolation we use only line of integrals from the neigh-
borhood of a given pixel (z,y), then AS < Ag, and sin A = AS. Additionally,
it is possible to omit the term W taking into account the fact that each
projection value p/ (6, af) has its equivalent p/ (—ﬁ, af +7+ 26). Because of
this we can notice that the sum of this pair of projections is proportional to
g+ + Uity _ ('[141"""3:2)2

4171 41 411 U2
and finally, we can write

. This means that for @; = 19 this factor is equal to 1,

21 Bm

1
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which is consistent with a form of the formula of the back-projection operation
for parallel beams.

Moreover, if we assume that rays, i.c. integral lines defining p’ (ﬁ caf ), from
the hypothetical fan-beam geometry pass through almost the same tissues as
rays from cone-beam geometry (p” (/3, al, zk)), the projection values associated
with these rays will be related to the corresponding path lengths through the
tissues. Because of this, we can derive the correction factor by using the following
relation:

pf (ﬁ,af) =ph (ﬂ,ah,zk) CORR = p" (ﬁ,ah,zk) R—L, (20)
| Rfcdqtz,%

where Ryq is the source-to-detector distance; 2y, is the transverse position on the
screen where a given ray is detected.

The geometry of this method of determining the correction factor is shown
in Figure 1.

Finally, formula (20) can be used directly to obtain a reference image for
the analytical statistical iterative reconstruction algorithm presented by the for-
mula (1), which was originally formulated for parallel beam scanner geometry,
as follows
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Fig. 1. The geometry of the cosine correction factor
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There exists in statistics a method known in the literature as a ML esti-
mation, which find its implementation also to solve a reconstruction problems
methods (see e.g. [16]). The objective in those solutions was devised according to
a discrete-discrete (D-D) data model. As was mentioned, this scheme has some
very serious drawbacks, and has been selected for one very obvious reason -
the measurement noise can be modelled relatively easily, because each measure-
ment is considered separately. We propose here the optimization formula which
is comnsistent with C-C data model, in the following form:

2
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(22)
where coefficients ha;, A5 can be precalculated according to the following relation:
27
1
hai,nj = 3 / int (Aicosp Ay + AjsinpAy) dp, (23)
0

and fi (z,y) is an image obtained by way of a back-projection operation; int (As)
is an interpolation function used in the back-projection operation.

The above presented shift-invariant system is much better conditioned than
qua-dratic form used in other approaches [17], and can be a starting point for
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the design of a 3D iterative reconstruction algorithm for spiral cone-beam scan-
ner geometry. In our case, this algorithm is based on the one of the principal
reconstruction methods devised for the cone-beam spiral scanner, i.e. the gener-
alized FDK algorithm [18]. Generally, proposed by us statistical reconstruction
algorithm consists of two steps, namely: an interpolation described by relation
(21) and an iterative reconstruction procedure according to formula (22).

3 Experimental Results

In our computer simulations, we have used projections obtained from a helical
scanner Somatom Definition AS+ (Siemens Healthcare), with the following pa-
rameters: reference tube potentia 120kVp and quality reference effective 200mAs,
R¢q = 1085.6mm (SDD - Source-to-Detector Distance); Ry = 595mm (SOD -
Source-to-AOR Distance); number of views per rotation ¥ = 1152; number of
pixels in detector panel 736; detector dimensions 1.09mm X 1.28mm. During the
experiments, the size of the processed image was fixed at 512 x 512 pixels. The
matrix of the coefficients ha;a; were precomputed before the reconstruction
process was started, and these coefficients were fixed for the subsequent process-
ing. The image obtained after back-projection operation was then subjected to a
process of reconstruction (optimization) using an iterative procedure. The start-
ing point of this procedure was chosen as a result of using a reconstruction FBP
algorithm. It is worth noting that our reconstruction procedure was performed
without any regularization regarding the objective function described by (22).
The iterative reconstruction procedure was implemented for a computer with 10
cores, i.e. with an Intel i9-7900X BOX/3800MHz processor (the iterative recon-
struction procedure was implemented at assembler level), and using a GPU type
nVidia Titan V. According to an assessment of the quality of the obtained images
by a radiologist, 8000 iterations are enough to provide an acceptable image. The
same results were achieved for both hardware implementations after 7.44s and
7.73s, for the CPU and GPU implementations, respectively. It is worth empha-
sizing that reconstruction process cab be performed for every cross-section image
separately, and a specific image requested by a doctor is ready for diagnostics
after the above mentioned time. In the case of the referential approach this time
is from 10 up to 90 minutes depending on the number of the simultaneously
reconstructed cross-sections [§8], [19].

All of the measurement data was obtained thanks to the organizers of the
Low Dose CT Grand Challenge [20]. The results obtained by the participants
in this competition were evaluated based on the correctness of diagnoses made
with a reduced dose of radiation. In our experiments, we reduced the radiation
using half the number of views (sparse sampling with limited projections of
views). We used a hundred images, with and without pathological changes. The
reconstructed images were then assessed by a radiologist: he marked lesions in
these images according to his subjective opinion. Table 1 shows tabulated scores,
where the above-mentioned diagnoses are related to the presence of true lesions
(as given by the organizers of the Low Dose CT Grand Challenge), i.e. the table
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shows the numbers of true positive cases (at least one lesion correctly marked
in a case with lesions), true negative cases (no lesions marked in a case with no
lesions), false positive cases (at least one lesion marked in a case with no lesions)
and false negative cases (no lesions marked in a case that had lesions).

Table 1. Results of the diagnoses made by a radiologist with a dose of radiation
reduced by half

Categor true true false false
gory negative positive negative positive
62 21 8 9

Sample views of the reconstructed images are presented in Figures 2 and 4
(where a reduction of x-ray dose absorbed by a patient is simulated: half the
standard dose). For comparison, the images reconstructed by a traditional Feld-
kamp reconstruction algorithm are also presented, for the same, half standard
dose (Figures 3 and 5).

Fig. 2. View of the reconstructed image using the statistical method presented in this
paper: a case with a large pathological change in the liver (hemangioma)
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Fig. 3. View of the reconstructed image using the standard FBP: a case with a large
pathological change in the liver (hemangioma)

Fig. 4. View of the reconstructed image using the statistical method presented in this
paper: a case with small pathological changes in the liver (bening cysts)
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Fig. 5. View of the reconstructed image using the standard FBP: a case with small
pathological changes in a the liver (bening cysts)

4 Conclusion

We have shown in this paper fully feasible statistical reconstruction algorithm for
helical cone-beam scanner. It is proved that this statistical approach, originally
formulated for parallel beam geometry, can be adapted for helical cone-beam
geometry, without any filtration and any rebinning. Simulations have been con-
ducted, which prove that our reconstruction method can be very fast (first of
all thanks to the use of FFT algorithms) and gives satisfactory results with
suppressed noise, without introducing any additional regularization term, using
only an early stopping regularization strategy.
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