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Abstract—This paper is concerned with the originally formu-
lated 3D statistical model-based iterative reconstruction algo-
rithm for spiral cone-beam x-ray tomography. The conception
proposed here is based on a formulation of the reconstruction
problem as a shift invariant system. This algorithm significantly
improves the quality of the subsequently reconstructed images, so
allowing a decrease in the x-ray dose absorbed by a patient. The
analytical roots of the algorithm proposed here permit a decrease
in the complexity of the reconstruction problem in comparison
with other model- based iterative approaches. In this paper, we
proved that this statistical approach, originally formulated for
parallel beam geometry, can be adapted for helical cone-beam
geometry of scanner, with the direct use of projections. Com-
puter simulations have shown that the reconstruction algorithm
presented here outperforms conventional analytical methods with
regard to the image quality obtained.

I. INTRODUCTION

Nowadays, the most significant problem in medical com-
puter tomography is the development of image reconstruction
algorithms from projections which would enable the reduc-
tion of the impact of measurement noise on the quality of
tomography images. This kind of approach is intended to
improve image quality and, in consequence, reduce the dose
of X-ray radiation while at the same time preserving an
appropriate level of quality in the tomography images. The
concept has found its application in the form of statistical
reconstruction algorithms. One of the most interesting from
the scietific and practical point of view, an approach, called
MBIR (Model-Based Iterative Reconstruction), is presented
in publications like [1], where a probabilistic model of the
measurement signals is described analytically. The objective in
those solutions was devised according to an algebraic scheme
of the signal processing for formulating the reconstruction
problem [2]. An algebraic scheme has been selected in this
case for one very obvious reason - the measurement noise
can be modelled relatively easily, because each measurement
is considered separately. Such a scheme adds significant
calculative complexity to the problem. The time for image
reconstruction becomes difficut from the practical point of
view. For instance, if the image resolution is assumed to be I×I
pixels, the complexity of the algebraic problem is of the level
of I×I×number of measurements×number of cross−
sections (in 3D tomography); a multiple of I to the power of
four in total.
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The difficulties mentioned above connected with the use
of an algebraic methodology can be decreased by using
an analytical strategy of reconstructed image processing. In
previous papers we have shown how to formulate the analytical
reconstruction problem consistent with the ML methodology
for parallel scanner geometry [4]. This strategy has been used
for fan-beams [3], and finally for the spiral cone-beam scanner
[5]. However, an approach to the reformulation of the recon-
struction problem from parallel to real scanner geometries,
called rebinning, was applied there. Much more popular 3D
reconstruction methods, which are implemented in practice,
are FDK (Feldkamp)-type algorithms that use projections
obtained from spiral cone-beam scanners directly (see e.g.
[6]). In this paper, we present a mathematical derivation of
a method for the direct (i.e. without rebinning) adaptation
of spiral cone-beam projections to the statistical analytical
reconstruction algorithm originally formulated by us.

II. ADAPTATION OF THE 2D ANALYTICAL APPROXIMATE
RECONSTRUCTION PROBLEM TO SPIRAL CONE-BEAM

PROJECTIONS

A foundation for our conception of the model-based in-
terative statistical algorithm is the 2D analytical approximate
reconstruction problem which was originally formulated for a
parallel scanner geometry [3] of scanner, as follows:
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where coefficients h∆i,∆j are precaculated in the numerical
way according to the following relation:

h∆i,∆j = ∆α

Ψ−1∑
ψ=0

int (∆i cosψ∆α + ∆j sinψ∆α) , (2)

and µ̃ (i, j) is an image obtained by way of a back-projection
operation; int (∆s) is an interpolation function used in the
back-projection operation; every projection is carried out after
a rotation by ∆α.

Above presented shift-invariant system is much better con-
ditioned than quadratic form used in algebraic aproaches [7],



and can be a starting point for the design of a 3D iterative re-
construction algorithm for spiral cone-beam scanner geometry.
One of the principal reconstruction methods devised for the
cone-beam spiral scanner is the generalized FDK algorithm.
In the traditional FDK approach, the cone-beam projections
are filtered and then back-projected in three dimensions. This
methodology is adapted to our original iterative model-based
reconstruction concept.

Taking into consideration the definition of the two-
dimensional inverse Fourier transform, and the frequential
form of the relation between the original image of a cross-
section of an examined object represented by function µ (x, y)
and the image obtained after the back-projection operation
µ̃ (x, y), we obtain:
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M (f1, f2) ej2π(f1x+f2y)df1df2, (3)

which, after converting to polar coordinates and using the
projection slice theorem (taking into account a full revolution
of the projection system), takes the form:
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P̄ (f, αp) ej2πf(x cosαp+y sinαp)dfdαp.

(4)
Then, after transferring the projections into the spatial domain,
and arranging the right hand side of the formula and changing
the order of integration, we getwe have the formula:
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where p̄p (s, αp) are projections obtained in a hypothetical
parallel scanner (after interpolation).

Next, after converting the attenuation function into polar
coordinates, we obtain:

µ̃ (r cosφ, r sinφ) = (6)
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p̄p (s, αp) ej2πf [r cos(αp−φ)−s]dαpdsdf.

In our considerations, we should also take into account the
application of the interpolation function used during the back-
projection operation, which should be placed appropriately
(a frequency representation of this function) in the formula
above, as follows:
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After suitable transformation we obtain a relationship for the
fan-beam image reconstruction method:
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There is a several serious drawbacks associated with the use
of the fan-beam reconstruction method formulated like this. It
stems from the dependence of equation (9) on the parameter
u̇, which poses certain practical problems when carrying out
the calculations during the reconstruction process. Instead of
a simple formula for the convolution kernel, it now becomes
necessary to determine a different form of the kernel for every
point of the object’s cross-section. This is because u̇ represents
the distance of the point (r, φ) from the radiation source.
Therefore, by changing the angle αf , we also change u̇. The
appropriate adjustment is based on a term in equation (9),
which is reproduced here in a suitably amended form:

int (s) =

∞∫
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INT (f) ej2πfu̇ sin(β̇−β)df. (10)

In this equation, the integration is carried out with respect to
the frequency f . The next step will be to make a substitution
for f , using the following expression:

ff =
f · u̇ · sinβ

Rf · β
. (11)

If at the same time we change the limits of integration, the
convolving function will be modified to:
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where

ff0 =
f0 · u̇ · sinβ

Rf · β
. (13)

Unfortunately, even here we encounter problems caused by the
dependence of the cut-off frequency ff0 on the parameter u̇.
On the other hand, if we were to establish a constant value
for ff0 it would mean that the reconstruction process for the
point (r, φ) would have a different resolution (determined by
the value of the cut-off frequency f0) for every angle αf .
However, if we put aside the assumption of uniform resolution
for the resulting reconstructed image, then, by manipulating
the values u̇ and f0, the varying value of ff0 can be fixed as:
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Let us assume that we apply a linear interpolation function
in formula (8). The frequency form of the linear interpolation
function is given by this formula:

INTL (f) =
sin2 (πf∆s)

(πf∆s)
2 . (15)

Taking into account in the formula (12) the proposed interpo-
lation function given by (15), we obtain the following relation:
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where ∆′s = f0/f

f
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it leads immediately to:
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Finally, if we assume that ∆s = 1, it gives
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In consequence, returning to the formula (9), we obtain
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Fortunately, we can linearize relation (21) by considering
expressions inside the integration, namely ∆β

sin ∆β .
In the case of linear interpolation we use only line of

integrals from the neighborhood of a given pixel (x, y),
then ∆β ≤ ∆β , and sin ∆β u ∆β. Additionally, it is
possible to omit the term Rf cos β

2u̇ taking into account the
fact that each projection value pf
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)
has its equivalent

pf
(
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)
, as shown in Figure 1.

Because of this we can notice that the sum of this pair of
projections is proportional to u̇1+u̇2
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means that for u̇1 u u̇2 this factor is equal to 1, and finally,
we can write
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which is consistent with a form of the formula of the back-
projection operation for parallel beams.

Fig. 1. Selecting complementary projection values

Moreover, if we assume that rays, i.e. integral lines defining
pf
(
β, αf

)
, from the hypothetical fan-beam geometry pass

through almost the same tissues as rays from cone-beam
geometry (ph

(
β, αh, zk

)
), the projection values associated

with these rays will be related to the corresponding path
lengths through the tissues. Because of this, we can derive
the correction factor by using the following relation:
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,
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where Rfd is the source-to-detector distance; zk is the trans-
verse position on the screen where a given ray is detected.

The geometry of this method of determining the correction
factor is shown in Figure 2.

Fig. 2. The geometry of the cosine correction factor

Finally, formula (21) can be used directly to obtain a refer-
ence image for the analytical statistical iterative reconstruction
algorithm presented by the formula (2), which was originally
formulated for parallel beam scanner geometry, as follows
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III. EXPERIMENTAL RESULTS

In our computer simulations, we have used projections
obtained from a helical scanner Somatom Definition AS+
(Siemens Healthcare), with the following parematers: refer-
ence tube potentia 120kVp and quality reference effective
200mAs, Rfd = 1085.6mm (SDD - Source-to-Detector
Distance); Rf = 595mm (SOD - Source-to-AOR Distance);
number of views per rotation Ψ = 1152; number of pixels in
detector panel 736; detector dimensions 1.09mm × 1.28mm.
During the experiments, the size of the processed image was
fixed at 512 × 512 pixels. The matrix of the coefficients
h∆i,∆j were precomputed before the reconstruction process
was started, and these coefficients were fixed for the subse-
quent processing. The image obtained after back-projection
operation was then subjected to a process of reconstruction
(optimization) using an iterative procedure. The starting point
of this procedure was choosen as a result of using a reconstruc-
tion FBP algorithm. It is worth noting that our reconstruction
procedure was performed without any regularization regarding
the objective function described by (2).

View of the reconstructed images after 30000 iterations are
presented (Table 3(a). For comparison, the image reconstructed
by a standard FBP reconstruction method (Table 3(b)) is also
presented.

IV. CONCLUSION

We have shown in this paper fully feasible statistical recon-
struction algorithm for helical cone-beam scanner. It is proved
that this statistical approach, originally formulated for parallel
beam geometry, can be adapted for heica cone-beam geometry,
without any filtration and any rebinning. Simulations have
been conducted, which prove that our reconstruction method
can be very fast (first of all thanks to the use of FFT algo-
rithms) and gives satisfactory results with suppressed noise,
without introducing any additional regularization term, using
only an early stopping regularization strategy.
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