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Adaptive Probabilistic Neural Networks for Pattern
Classification in Time-Varying Environment

Leszek Rutkowski, Senior Member, IEEE

Abstract—In this paper, we propose a new class of probabilistic
neural networks (PNNs) working in nonstationary environment.
The novelty is summarized as follows: 1) We formulate the
problem of pattern classification in nonstationary environment as
the prediction problem and design a probabilistic neural network
to classify patterns having time-varying probability distributions.
We note that the problem of pattern classification in the nonsta-
tionary case is closely connected with the problem of prediction
because on the basis of a learning sequence of the length , a
pattern in the moment + , 1 should be classified. 2) We
present, for the first time in literature, definitions of optimality of
PNNs in time-varying environment. Moreover, we prove that our
PNNs asymptotically approach the Bayes-optimal (time-varying)
decision surface. 3) We investigate the speed of convergence of
constructed PNNs. 4) We design in detail PNNs based on Parzen
kernels and multivariate Hermite series.

Index Terms—Orthogonal series kernel, Parzen kernel, pattern
classification, probabilistic neural networks (PNNs), time-varying
environment.

I. INTRODUCTION

PROBABILISTIC neural networks (PNNs), introduced by
Specht [33]–[35], have their predecessors in the theory

of statistical pattern classification. In the 1950s and 1960s,
problems of statistical pattern classification in the stationary
case were accomplished by means of parametric methods
using the available apparatus of statistical mathematics [9],
[45]. The knowledge of the probability density to an accu-
racy of unknown parameters was assumed and the param-
eters were estimated based on the learning sequence. Typ-
ical techniques included maximum likelihood and Bayesian
approaches. Having observed tendencies present in literature
within the last twenty years we should say that these methods
have been almost completely replaced by the nonparametric
approach [8], [10]. [11], [15], [21], [32], [38], [46]. In the non-
parametric approach, it is assumed that a functional form of
probability densities is unknown. The latter are estimated by
nonparametric techniques like Parzen’s approach, orthogonal
series, or nearest neighbor algorithms. It is well known that
these techniques are convergent in the probabilistic sense, e.g.,
in probability or with probability one. Moreover, pattern clas-
sification procedures derived from nonparametric estimates are
convergent when the length of the learning sequence increases
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to Bayes’ rules. Asymptotically-optimal pattern classification
rules were examined by several authors [7], [12], [13], [26],
[27], [29], [47]. The PNNs studied in literature implement
in a parallel fashion nonparametric estimation techniques.
They are characterized by fast training and convergence to
the Bayes-optimal decision surface. For interesting applica-
tions of the PNNs, the reader is referred to [18], [20], [22],
[25], and [37]. The crucial problem in these applications is
the choice of the smoothing parameter. Most techniques are
based on vector quantization [4], [48], cluster analysis [36], or
the genetic algorithm [19]. A short survey of other available
methods is given in [16].

The above review of literature concerned the stationary sit-
uation. However, a lot of phenomena have a nonstationary
character, e.g., the conventer-oxygen process of steelmaking,
the change of catalyst properties in an oil refinery or, in the
process of carbon dioxide conversion. In particular, a large
group of problems from the domain of technology, biology,
and physics is described by nonstationary probability densi-
ties, e.g., of the type “movable argument,”
[23]. The problem of pattern classification in a time-varying
environment was analyzed in only a few works, de Figueiredo
[6] and Tzypkin [40] used the parametric approach approx-
imating probability densities (or discriminant functions) that
change with time by means of linear combinations of a certain
fixed set (base) of functions. Appropriate coefficients were es-
timated by making use of dynamic-stochastic approximation
algorithms. Of course, such an approach does not ensure an
asymptotic optimality of the classification rules. Rutkowski
[28] considered the asymptotically-optimal classification rules
in a quasi-stationary environment when class conditional den-
sities are convergent to a finite limit. Some other results con-
cerning learning in a time-varying environment are scattered
in literature [14], [17], [24].

In this paper, we propose a new class of probabilistic neural
networks working in a nonstationary environment. The novelty
is summarized as follows.

1) We formulate the problem of pattern classification in a
nonstationary environment as a prediction problem and
design a probabilistic neural network to classify patterns
having time-varying probability distributions. We note
that the problem of pattern classification in the nonsta-
tionary case is closely connected with the problem of pre-
diction because on the basis of a learning sequence of
length , a pattern in the moment , should
be classified.
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2) We present, for the first time in literature, definitions of
optimality of PNNs in time-varying environment. More-
over, we prove that our PNNs asymptotically approach
the Bayes-optimal (time-varying) decision surface. Time-
varying discriminant functions are estimated by means of
a general learning procedure presented in Section III and
convergence of algorithms is a consequence of theorems
presented in that section.

3) We investigate the speed of convergence of the con-
structed PNNs.

4) We design, in detail, PNNs based on the Parzen kernels
and multivariate Hermite series.

It should be emphasized that the design of the PNNs in
a time-varying environment is much more difficult than in
the stationary case. In order to design PNNs approaching the
Bayes-optimal decision surfaces (time-varying), we should pick
up not only a smoothing parameter (denoted in this paper by

for the Parzen kernel and by for the orthogonal series
kernel) but also a learning sequence which should satisfy
conditions typical for stochastic approximation procedures [1].
In this context, it is worth to quote Bendat and Piersol [2],
who believed that the problem of estimation of nonstationary
probability density requires the possession of many realizations
of the stochastic process. We would like to emphasize that the
PNNs constructed in this paper allow to track time-varying
discriminant functions (in particular, tracking time-varying
probability densities) with use of only one realization of the
stochastic process—subsequent observations of a learning
sequence. For illustration of the capability of our PNNs, we
mention that having a sequence of independent random
variables with probability densities , we
are able to estimate time-varying densities despite that both
is unknown and parameter are unknown. Con-
sequently, we are able to estimate time-varying discriminant
functions and corresponding classification rules. The PNNs
studied in this paper are adaptive in the sense that they adopt to
changes of the time-varying environment.

This paper is organized into XI sections. In Section II, we
present kernel functions on which the construction of PNNs will
be based. Section III is a short introduction to PNNs in sta-
tionary environment. Moreover, in this section, we extend the
idea of the classical PNNs to the recursive PNNs with a gain

. In the following sections, we replace the gain by a
more general (like in stochastic approximation methods) in
order to enhance the recursive PNNs for tracking nonstationary
signals. Since the existing theories do not allow to analyze “en-
hanced” recursive PNNs in a time-varying environment, in Sec-
tion IV we present appropriate theorems which are very useful
in the next sections. In Section V, we describe the problem of
pattern classification in a time-varying environment. Estimates
of time-varying discriminant functions are presented and clas-
sification rules are proposed. In Section VI, it is shown that
our PNNs approach Bayes (time-varying) decision discriminant
functions. Moreover, we investigate the speed of convergence.
In Section VII and VIII, the PNNs based on the Parzen kernel
and orthogonal series kernel are discussed in details. A specific
case of the above mentioned nonstationarity of the type “mov-
able argument” is elaborated in Section IX. In Section X, we
present simulation results.

II. KERNEL FUNCTIONS FOR THE PNNs CONSTRUCTION

All PNNs studied in this paper are based on a sequence ,
, of bivariate Borel, measurable functions (so-

called general kernel functions) defined on , ,
. The concept of general kernel functions stems from the

theory of nonparametric density estimation. We will use ideas
of the two methods: Parzen’s approach and orthogonal series.

A. Application of the Parzen Kernel

Sequence based on the Parzen kernel in the multidimen-
sional version takes the following form:

(1)

where is a certain sequence of numbers and is an appro-
priately selected function. Precise assumptions concerning se-
quence and function that ensure the convergence of PNNs
will be given in the next sections. It is convenient to assume that
function can be presented in the form

Then, sequence is expressed by means of formula

(2)

The most popular is the Gaussian kernel given by

(3)

and

(4)

B. Application of Orthogonal Series

Let , , be a complete orthonormal system
in , , such that

(5)

where is a sequence of positive numbers. It is well known
that the system composed of all possible products

(6)

is a complete orthonormal system in , where

times

It constitutes the basis for construction of the following se-
quence :

(7)



RUTKOWSKI: ADAPTIVE PNNs FOR PATTERN CLASSIFICATION IN TIME-VARYING ENVIRONMENT 813

where depends on the length of the learning sequence, i.e.,
. It can be given in a shortened form as

(8)

where

If , then we design the PNNs based on the Her-
mite series given by

where

and , . It is easly seen that the or-
thonormal functions of the Hermite series can be recursively
generated by

(9)

It is known [43] that for the Hermite series .
If , then we design the PNNs based on the La-

guerre series given by

where

and , . It is easly seen that the or-
thonormal functions of the Laguerre series can be recursively
generated by

for

It is known [43] that for the Laguerre series
.

If , then we design the PNNs based on the Le-
gendre series given by

where

and , . It is easly seen that the orthonormal
functions of the Legendre series can be recursively generated by

for

It is known [43] that for the Legendre series const .

III. PNNs FOR PATTERN CLASSIFICATION IN

STATIONARY ENVIRONMENT

Let be a sequence ofinde-
pendent identically distributed (i.i.d.) pairs of random variables,

takes values in the set of classes , whereas
takes values in . The problem is to estimate from
and , where is a learning se-
quence. Suppose that and , are the prior
class probabilities and the class conditional densities, respec-
tively. We define a discriminant function of class

(10)

Let be the loss incurred in taking action when
the class is . We assume 0–1 loss function. For a decision func-
tion : the expected loss is

(11)

A decision function which classifies every as coming
from any class for which

(12)

is a Bayes-decision function and

(13)

is the minimal Bayes risk. The function is called the
Bayes-discriminant function. Let be the number of obser-
vations from class , . We partition observations

into subsequences

(14)

As estimates of conditional densities we apply nonparametric
estimator in the form

(15)

The prior probabilities are estimated by

(16)
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Fig. 1. Probabilistic neural network for pattern classification.

Combining (10), (15), and (16) we get the following discrimi-
nant function estimate:

(17)

and corresponding classification procedure

(18)

The probabilistic neural network realizing procedure (18) is
shown in Fig. 1.

It was shown [7], [12], [47] that

(19)

in probability (with pr. 1) if estimators (15) converge in proba-
bility (with pr. 1).

Example 1: For the Parzen kernel, procedure (18) classifies
every as coming from a class which maximizes

for .
We will now derive classification procedures from the gener-

alized-regression probabilistic neural network [35]. Instead of
partition (14), we define

if
if

(20)

for and .
Observe that discriminant functions , , can

be presented in the form

(21)

where

(22)

Therefore, the estimates of discriminant functions derived from
regression model take the form

(23)

The classification procedure derived from estimator (23) takes
the form

(24)

Generalized-regression neural network for pattern classification
is presented in Fig. 2.

Example 2: For the Parzen kernel, procedure (24) classifies
every as coming from a class which maximizes

for . The appropriate probabilistic neural network
is shown in Fig. 3 assuming use of kernel (4) and the normal-
ization of vectors and .

A recursive version of estimate (23) is given by

(25)
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Fig. 2. Generalized-regression neural network for pattern classification.

or alternatively in the form

(26)

The classification procedure becomes

(27)

The probabilistic neural network realizing procedure (27) is
shown in Fig. 4. Whereas its Parzen-kernel version (for )
is depicted in Fig. 5. The net in Fig. 5 consists of one neuron
in the first layer having inputs, coordinates of the vector ,

. Let us notice that the role of weights is played
by the coordinates of vector . The second layer consists of
two neurons with the feedback typical for recurrent neural
networks.

Fig. 3. Generalized-regression neural network based on the Parzen kernel for
pattern classification (M = 2).

Fig. 4. Recursive generalized-regression neural network for pattern
classification.

IV. PRELIMINARIES TO PNNs IN TIME-VARYING ENVIRONMENT

In this section, we study a general problem of learning in the
nonstationary environment. The results and theorems will be a
starting point for construction of the PNNs in the next sections.
Let us consider a sequence , , of in-
dependent pairs of random variables, where -random vari-
ables having the probability density taking values in the set

-random variables taking values in the set .
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Fig. 5. Recursive generalized-regression neural network based on the Parzen
kernel for pattern classification (M = 2).

We assume that probability distributions of the above random
variables are completely unknown.

Let us define the following function:

(28)

From the assumption that the probability distributions are
completely unknown, it follows that the sequence of functions
(28) is also unknown. The goal of learning will be tracking the
changing function , .

Let be a sequence of numbers satisfying the following
conditions:

(29)

We will consider a nonparametric learning procedure of the fol-
lowing type:

(30)

As the global measure of the learning process quality, we take

(31)

We will show that

Define

(32)

Theorem 1: If the following conditions are satisfied:

(33)

(34)

(35)

then

(36)

Theorem 2: If the following conditions are satisfied:

(37)

(38)

(39)

then

(40)

Theorem 3: If the following conditions are satisfied:

(41)

(42)

(43)

(44)

then

(45)

where and are positive constants and
with for and for .

It would be interesting to investigate if procedure (30) on the
basis of learning set

(46)

allows to predict

(47)

for . In the considered situation, performance measure
(31) takes the form

(48)

The following result is a corollary from Theorems 1 and 2 and
allows to predict , , on the basis of a learning set of
length .

Corollary 1:

i) If the assumptions of Theorem 1 are satisfied, then

(49)

ii) If the assumptions of Theorem 2 are satisfied, then

(50)

The next corollary follows immediately from Theorem 3.
Corollary 2: Under conditions of Theorem 3

(51)

Above, symbol denotes a positive constant which de-
pends on , the rest of the symbols are identical as in Theorem
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3. Of course, the more steps in prediction, the bigger value
of the right side of expression (51) because increases with
bigger (this is shown in the proof of the above corollary).

V. PROBLEM DESCRIPTION AND PRESENTATION OF

CLASSIFICATION RULES

Let , be a sequence of independent
pairs of random variables. Random variable has an inter-
pretation of the pattern connected with a given class and takes
values in space , . Random variable takes values
in set called the set of classes, specifying the class
number.

A priori probabilities of occurrence of class in moment
will be denoted by , i.e.,

. It is assumed that there are conditional
probability densities of random variable on condition
that . These densities are called densities in classes.

The classification rule is a measurable mapping :
. The measure of quality of the rule is the prob-

ability of misclassification

(52)

The rule that minimizes the above index is called the Bayes’
rule. The Bayes’ rule in moment is denoted by and the
value of is denoted by , i.e.

(53)

We will define the following function:

(54)

This function will be called the discriminant function of class
in moment . Generalizing considerations for the stationary

case [9], it is easily seen that the rule has the form

(55)

We assume that both a priori probabilities and densities
in classes , , , are completely
unknown. For this reason, we use empirical classification rules
based on estimators of discriminant functions.

The problem of nonparametric pattern classification in a non-
stationary case boils down to constructing empirical classifica-
tion rules that on the basis of the learning sequence

(56)

would classify pattern , . It is, of course, an issue of
prediction of patterns having nonstationary probability distribu-
tions. In the case of complete probabilistic information, i.e., the
knowledge of discriminant functions

(57)

pattern could be classified by means of rule (55).

Let be the estimator constructed on the basis of the
learning sequence (14) of function , . We will
consider the empirical rules of the form

(58)

The sequence of empirical rules is called the classification-
learning algorithm. The rule is a function of the learning
sequence and classified pattern ,

.
We will now construct an estimator of function (57). We will

first show that the procedure (30) that was presented in Sec-
tion IV can be used for estimation of time-varying discriminant
functions (57). Let

if
if

(59)

Discriminant function (54) can be presented as

(60)

where

(61)

Comparing (60) and (30), setting for the fixed , we
use procedure (30) for the estimation of discriminant functions
(54)

(62)

On the basis of considerations of Section IV (see Corollary
1), can be used not only for estimation of , but also for
estimation of , .

The structural scheme of a system that realizes the classifi-
cation algorithm with the use of procedure (58) is presented in
Fig. 6. Sequences and , on which this procedure is
based, should generally satisfy different conditions depending
on the class number . That is why in Fig. 6., symbols
and , are used. For convenience, we drop a
dependence on in theorems presented in the next sections.

We should point out that in order to classify pattern ,
, it is necessary to store the whole learning set of the

length . Next, when the pattern to be classified appears,
procedure (62) is activated starting from and putting

.

VI. ASYMPTOTIC OPTYMALITY OF CLASSIFICATION RULES

As was mentioned in the introduction, the concept of asymp-
totic optimality of classification rules in the nonstationary case
has not been studied in literature yet.

In this section we will present appropriate definitions and
show that when the length of learning set (14) increases, clas-
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Fig. 6. Recursive generalized-regression neural network for pattern classification.

sification algorithms become increasingly similar to optimal al-
gorithm (55) which could be determined when a priori prob-
abilities and densities in classes are known,

, .
The global performance measure of classification rule (55),

classifying , is the probability of misclassification in mo-
ment

(63)

As a performance measure of empirical rule (58) we take

(64)
i.e., the probability of missclassification of pattern deter-
mined on the basis of rule (58) and learning sequence (14).

Definition 1: Classification algorithm defined by (58) is
weakly asymptotically optimal when

(65)

Definition 2: Classification algorithm defined by (58) is
strongly asymptotically optimal when

(66)

with probability 1.
The following theorem ensures asymptotic optimality of the

rule (58) if estimator (expressed by formula (62) “follows”
the changes of the discriminant function , when .

Theorem 4: Let , , be a sequence of sets in
such that for , the following conditions are satisfied

(67)

and

(68)

where

A. If

(69)

then the pattern classification rule (58) is weakly
asymptotically optimal.

B. If

(70)

with pr. 1, then the pattern classification rule (58) is
strongly asymptotically optimal.

Remark 1: It is always possible to select sequence in such
a way so that condition (67) could be met. However, it does
not mean that the condition (68) is automatically satisfied. For
instance, if densities in classes are of the exponential type

(71)
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and

(72)

then there does not exist sequence that satisfies conditions
(67) and (68) at the same time. However, if the densities in the
classes are of the type “movable argument”

(73)

then it is possible to take (in the scalar case)

(74)

for sufficiently large .
The speed of convergence of procedure (58) in the sense (69)

can be evaluated by means of Theorem 3 taking into account
Corollary 2 concerning prediction. For this purpose, it is nec-
essary to specify constants , and that are present in the
assumptions of that theorem. We will do it in Section IX, consid-
ering a particular type of nonstationarity. Now, we will connect
the speed of convergence of (65) with the speed of convergence
of (69). As we know (Definition 1), convergence (65) ensures a
weak asymptotic optimality of the rule (58).

Let us denote

(75)
and

(76)

where , .
Theorem 5: Let us assume that

(77)

A. If sequence is bounded, i.e.,

(78)

then

(79)

B. If sequence is not bounded, i.e.,

(80)

then

(81)

From the proof of Theorem 5 it follows that if nonstationarity
densities in classes are of the “movable argument” type (73),
then conclusion a) is true when

(82)

for a certain .
In the next sections, we will consider procedures of type (58)

constructed on the basis of the Parzen kernel and the orthogonal

series method. Using general Theorems 1 and 2 from Section IV
and Theorem 4, we will present conditions ensuring the conver-
gence of algorithm (58).

VII. CLASSIFICATION PROCEDURES BASED ON

PARZEN KERNELS

As we remember (Section II), kernel can be expressed in
the following way:

(83)

Let us assume that

(84)

(85)

(86)

(87)

For , the above conditions are satisfied by function (3). In
Fig. 7 we show the PNNs with the Parzen kernel (4). For ,
conditions (83)–(87) are met by the function

The appropriate conditions for the convergence of the classi-
fication algorithm will depend on smooth properties of the den-
sity function . We define

(88)

where , , .
The following result is a corollary from Theorems 1 and 4.
Corollary 3: If function satisfies conditions (83)–(87), as-

sumptions (67) and (68) hold, , and

(89)

(90)

(91)

(92)

then the pattern classification rule (58) is weakly asymptotically
optimal.

Corollary 4 is a consequence of Theorems 2 and 4.
Corollary 4: If function satisfies conditions (83)–(87), as-

sumptions (67) and (68) hold, , and

(93)

(94)
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Fig. 7. Recursive generalized-regression neural network based on the Parzen kernel for pattern classification in time-varying environment (M = 2).

(95)

(96)

then the pattern classification rule (58) is strongly asymptoti-
cally optimal.

VIII. CLASSIFICATIONS PROCEDURES BASED ON

ORTHOGONAL SERIES

Let us denote

(97)

where

(98)

The following result is a corollary from Theorems 1 and 4.
Corollary 5: If conditions (91) and (92) are satisfied,
, and

(99)

(100)

then the pattern classification rule (58) is weakly asymptotically
optimal.

Corollary 6 is a consequence of the general Theorems 2 and 4.

Corollary 6: If conditions (95) and (96) are satisfied,
, and

(101)

(102)

then the pattern classification rule (58) is strongly asymptoti-
cally optimal.

Conditions (100) and (102) take a more concrete form de-
pending on the smooth properties of function and the or-
thogonal series used. As an example, we will use the multidi-
mensional Hermite series.

Let

(103)

where

Then

(104)

The above inequality is a generalization to the multidimen-
sional and nonstationary case of Walter’s result [43]. By means
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of this inequality, conditions (100) and (102) can be expressed
as

(105)

and

(106)

As we will see in the next section, these conditions take a simple
form for a particular type of nonstationarity of function .

IX. NON-STATIONARITY OF THE TYPE “MOVABLE ARGUMENT”

In order to simplify our considerations, let us examine the
one-dimensional case and assume that a priori probabilities
do not change with time. In regard to density in classes, we
assume that they are of the form

for , , where . The above
case occurs most often in practice [23]. In Tables I and II we
present conditions that ensure the weak and strong asymptotic
optimality of the PNNs [procedure (58)] constructed on the
basis of the Parzen kernel. Tables III and IV show the analogous
conditions for the Hermite orthonormal series.

In regard to smooth properties of function , (con-
ditions (90) and (94)) is assumed in the case of the use of the
Parzen kernel and (conditions (100) and (102)) in the
case of the use of the Hermite series. However, as follows from
the last columns of Tables III and IV, the use of the orthogonal
series method requires more assumptions imposed on function

and its derivatives. For instance, let us assume that sequence
representing density function nonstationarity is of the type

(107)
Analyzing all conditions specified in Tables I–IV, it is possible
to establish within what limits parameters ,
should be contained so that Corollaries 3–6 could be true. The
results of such an analysis are presented in Table V.

It is easily seen that the use of the orthogonal series requires
much more strict assumptions as regards the range within which
parameters can be contained.

Using Theorem 3 and Corollary 1 we will now evaluate the
speed of convergence of algorithms (58) and (62). In procedure
(62), let us select sequences , and of the following
type:

(108)

(109)

(110)

TABLE I
CONDITIONS FOR WEAK CONVERGENCE OF PNNs BASED ON THE

PARZEN KERNEL

TABLE II
CONDITIONS FOR STRONG CONVERGENCE OF PNNs BASED ON THE

PARZEN KERNEL

TABLE III
CONDITIONS FOR WEAK CONVERGENCE OF PNNs BASED ON THE

ORTHOGONAL SERIES

TABLE IV
CONDITIONS FOR STRONG CONVERGENCE OF PNNs BASED ON

THE ORTHOGONAL SERIES

TABLE V
CONDITIONS IMPOSED ON PARAMETER t —NONSTATIONARITY OF THE TYPE

“MOVABLE ARGUMENT”



822 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 15, NO. 4, JULY 2004

A. Speed of Convergence of Algorithms Based on the Parzen
Kernel

With reference to the symbols from Theorem 3, we obtain

(111)

consequently

(112)

where

(113)

If

(114)

then, from Theorem 5, we obtain

(115)

where

(116)

B. Speed of Convergence of Algorithms Based on the Hermite
Orthonormal Series

In this case we have

(117)

From Corollary 1 it follows that:

(118)

where

(119)

If condition (114) holds, then

(120)

where

(121)

Analyzing formulas (115) and (120) we see that the influence of
parameters on the speed of convergence of both algorithms is
much more significant in the case of use of the algorithm based
on the Hermite series (it results in a decrease of this speed).

In all the above considerations, the same degree of smooth
properties of function was assumed: for the algo-
rithm based on the Parzen kernel and for the algorithm

based on the Hermite orthogonal series method. It is easy to
prove that for , the range within which the parameters ,

are contained and which ensures weak asymp-
totic optimality of the algorithm does not widen. For (with
additional assumptions as regards function and its deriva-
tives up to the th order), the following inequality holds:

(122)

where

From the last inequality it follows that:

(123)

for a sufficiently large . In other words, for the algorithm
based on the Hermite series, a significant increase of smooth
properties of function allows the widening of the range
within which the parameters parameters are contained, but
this “widened” range is nevertheless significantly narrower
than in the case of the use of the algorithm based on the Parzen
kernel .

X. SIMULATION RESULTS

In this section, we apply the PNNs based on the Parzen kernel
for estimation of time-varying probability densities and for clas-
sification of time-varying signals.

A. Estimation of Time-Varying Probability Densities

Let be a sequence of independent random variables
with probability densities . It is easily seen
that if

when
when

then algorithm (62) can be used for nonparametric learning of
time-varying probability densities . In this case convergence
of the PNNs follows from Corollaries 3–6. This problem was
also investigated in works [28] and [41] but the authors assumed
then that the sequence of nonstationary probability density func-
tions is convergent in a specified sense to a finite limit.

Procedure (62) applied for nonparametric estimation of time-
varying probability densities takes the form

Let us choose

Depending on the parameter in model we
pick up parameters and such that
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Fig. 8. Time-varying probability density estimation for t = 0:1, a = 0:3,
H = 0:5, k = 1, 3, 5.

ensuring the convergence of the PNNs. In Figs. 8, 9, and
10 we show the results of simulations for , 0.3 and 0.5

Fig. 9. Time-varying probability density estimation for t = 0:3, a = 0:4,
H = 0:3, k = 1, 3, 5.

respectively. In each case , kernel (3) is used and the
smoothing parameter , 3, 5. We observe that the best re-
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Fig. 10. Time-varying probability density estimation for t = 0:5, H = 0:3,
a = 0:4, k = 1, 3, 5.

sults are obtained for . The problem of smoothing param-
eter selection is much more difficult in the nonstationary case
and is a subject of the future research.

Fig. 11. Time-varying discriminant functions for t = 0:5, (a) a = 0:3, H =

0:2, k = 3; (b) a = 0:4, H = 0:3, k = 5.

B. Classification

Consider a two-category classification problem with
and

where

In this case the minimum probability of error is given by [9, p. 73]

We will use procedures (58) and (62) for classification and
show that empirical probability of missclassification approaches
the above minimum probability. In Fig. 11 we present the results
of simulations for (for each class) and . Two
cases are considered: , , and ,

, . We observe that the decision boundary
is almost perfectly estimated. Tables VI and VII show empir-
ical probability of missclassification approaching the minimum
probability of error as grows. For each (varying from
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TABLE VI
MISCLASSIFICATION VERSUS n: t = 0:5, k = 3, a = 0:3, H = 0:2

TABLE VII
MISCLASSIFICATION VERSUS n: t = 0:5, k = 3, a = 0:4, H = 0:3

1000–10 000) we test the PNNs on 1000 samples from class 1
and 1000 from class 2.

XI. SUMMARY AND DISCUSSIONS

The presented pattern classification procedures are asymptot-
ically optimal in the sense of Definitions 1 and 2. These prop-
erties are true with certain assumptions concerning densities in
classes , , .

In the stationary case, analogous properties are true with no
assumptions concerning densities in classes [13], [26], but we
should remember that the problems considered in this paper are
much more difficult.

In Corollaries 3–6 concerning asymptotic optimality of rule
(58), the type of nonstationarity was not specified, which en-
ables us to use the obtained results for classifications of patterns
characterized by various types of nonstationarity, but at the cost
of the clarity of the respective conditions. These conditions, as
it was shown in Tables I–IV, are clear and understandable in
the case of the “movable argument”-type of the nonstationarity.
Using Tables I–IV, it is possible to design a system realizing
the pattern classification algorithm (58), i.e., properly select se-
quences , or , when nonstationary densities in classes
are of the “movable argument” type, i.e.,

For example, if then neither the knowledge of func-
tion nor the knowledge of parameters is necessary in
order to design algorithm (58). In spite of this, our algorithm
will possess asymptotically-optimal properties in the sense of
Definitions 1 and 2.

The comparison of algorithms based on the Parzen kernel
with algorithms constructed on the basis of the orthogonal se-
ries method, carried out in Section IX, was undoubtedly more
favorable to the former. Their application requires weaker as-
sumptions concerning smooth properties of the density function
and they allow the tracking of more significant changes of these
functions (Table V). Finally, we note that combining the results
of several classifiers may lead to improved performance of clas-
sification. Therefore, it would be interesting to investigate other
soft computing techniques, e.g., SVM [42] or fuzzy methods
[31], to classify patterns in a time-varying environment.

APPENDIX

Proof of Theorems 1 and 2

Of course,

(124)

Using argumentation similar to that in [30], we obtain

(125)

Application of the appropriate lemma in [3] to (125) concludes
the proof.

Proof of Theorem 3

The theorem is a consequence of the application of Chung’s
[5] lemma (for ) or Watanabe’s [44] (for )
to expression (125).

Proof of Theorem 4

Slightly modifying the proof of theorem in work [47], we
obtain

(126)
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Under Schwartz’s inequality

Thus, from the inequality

follows the first part of the theorem.
The second part can be proved in a similar way.

Proof of Corollary 1

From the obvious inequality

(127)

it follows that in order to ensure convergence of procedure (30)
for the prediction problem, the conditions of theorems presented
in Section IV should be supplemented with:

(128)

It is easily seen that for , condition (128) is implied by
assumption (35).

For , the following holds

(129)

Moreover, applying many times inequality ,
we obtain

(130)

It means that for , condition (128) is implied by assump-
tion (35) which concludes the proof.

Proof of Corollary 2

The corollary follows from Theorem 3 and inequality (127).

Proof of Theorem 5

From inequality (126) it follows that:

Let be a -dimensional cube with the middle in point zero
and let the length of its side be . Then, for ,

Consequently,

Choosing , we obtain the conclusion of
Theorem 5. Let us point out that if , then
as we may choose a -dimensional cube with the middle in

.

Proof of Corollaries 3 and 4

Let us point out that

Hence

(131)

Assuming that function is of the type (83) and conditions
(84)–(87) are satisfied, we obtain

Moreover,

and

Now, Corollaries 3 and 4 are a direct consequence of Theorems
1 and 2.
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Proof of Corollaries 5 and 6

Taking into consideration the following facts:

we proceed in a similar manner like in the previous proof.
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