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Flexible Neuro-Fuzzy Systems

Leszek RutkowskiSenior Member, IEEEaNd Krzysztof Cpalka

Abstract—In this paper, we derive new neuro-fuzzy structures It should be emphasized that formulas (1) and (2) do
called flexible neuro-fuzzy inference systems or FLEXNFIS. not satisfy the conditions of fuzzy implication formu-
Based on the input—output data, we learn not only the parameters lated by Fodor [11]. We refer to (1) and (2) as to “engi-

of the membership functions but also the type of the systems

(Mamdani or logical). Moreover, we introduce: 1) softness to neering implications” (see Mendel [34], [35]) contrary to

fuzzy implication operators, to aggregation of rules and to the fuzzy implications satisfying the axiomatic definition

connectives of antecedents; 2) certainty weights to aggregation (see Definition 1).

of rules and to connectives of antecedents; and 3) parameterized The aggregation is performed by an application of

families of T-norms and S-norms to fuzzy implication operators, S-norm

to aggregation of rules and to connectives of antecedents. Our s s s

approach introduces more flexibility to the structure and design S {aj,as,...,a,} = S{a} = ay *as*...%a,, = SiL; {a;}

of neuro-fuzzy systems. Through computer simulations, we show (4)

that Mamdani-type systems are more suitable to approximation e.g

problems, whereas logical-type systems may be preferred for ~r

classification problems. S{al = max {a;} (5)

Index Terms—Certainty weights, logical approach, Mamdani =1,

approach, neuro-fuzzy inference systems (NFIS). It should also be noted that in most cases the aggrega-

tion of rules is performed as a part of defuzzification (see,
I. INTRODUCTION e.g., [35] and [58]).

) 2) The second paradigm applies fuzzy implications to infer-
N the last decade, various neuro-fuzzy systems have been) ence and corr:juncti?)n topgggregatign P

developed (see, e.g., [4]-[7], [10], [19], [21], [26], [27], L Lo S
[291-(33], [37]-[39], [41]-{48], [64]{66]). They combine the Defmmon 1. (Euzzy Impllc_a'uqn).A fuzzy mphcanoq is a'
o functionI : [0,1]" — [0, 1] satisfying the following conditions:
natural language description of fuzzy systems and the learnin i
properties of neural-networks. Some of them are known in the if a1 < a3, thenl(ar,a2) > I(as,az), for all

literature under short names like ANFIS [20], ANNBFIS [7], a1,a2,a3 € [0,1].
DENFIS [23], FALCON [31], GARIC [2], NEFCLASS [38], (12) if a2 < a3, thenl(ar,a2) < I(as,az), for all
NEFPROX [37], [38], SANFIS [57] and others. In this paper, a1,az,a3 € [0,1].

we study a wide class of fuzzy systems trained by the back(!3) 1 (0,a2) = 1, forallax € [0,1] (falsity implies any-

propagation method. Following other authors we call them thing). L
neuro-fuzzy inference systems (NFIS). To emphasize their(14) tl(athll) )Z 1, for all a; € [0,1] (anything implies
autology).

main feature-flexibility, we also use name FLEXNFIS. .
In the literature to date, two approaches [7], [44], [58], [67% (15) I(1,0) = 0 (Booleanity). - 3
have been proposed to design fuzzy systems. elected fuzzy implications satisfying the above conditions are

1) The first approach, called the Mamdani method, uses CAﬁ_ted in Table I. In this table, implications 1-4 are examples of

junction for inference and disjunction to aggregate indf" S-implication associated with an S-norm

vidual rules. In the Mamdani approach, the most widely I(a,b) = S{1—a,b} (6)
used operators measuring the truth of the relation betwegyg.
input and output are the following:

I(a,b) = max{l —a,b}. @)
I(a,b) = min {a,b} 1) . o _
For fuzzy systems with a logical implication, the aggregation is
and realized by a T-norm
T —T{al=a *as ... %an =T, {a;
T(ab)=a-b @) {ay,a9,...;a,} =T{a} = a1 *xazx...xa, = ,L-zl{a(ls})
or more generally eg.
T = i it
I(a,b) =T {a,b} . @3) {a} = min {a:} ©)

_ _ _ Neuro-fuzzy inference systems of a logical-type are described
Manuscript received June 20, 2002; revised February 18, 2003. in Section I1I-B. It should be noted that the aggregation of an-
The authors are with the Department of Computer Engineering, Technl(fal . .

University of Czestochowa, Czestochowa 42 200, Poland. ecedents in e_ach rule is performed by the same formula (8) for
Digital Object Identifier 10.1109/TNN.2003.811698 both Mamdani and logical-type systems.

1045-9227/03$17.00 © 2003 IEEE
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TABLE | TABLE I
Fuzzy IMPLICATIONS AND-TYPE SYSTEM
A ‘ System
_ - 0 Mamdani type
w— - — 1 logical type

1 Kleene-Dienes max{l a,b} (0,1) compromise (Mamdani AND logical)
2 | Lukasiewicz min{l,1-a +b}
3 Reichenbach l-at+a-b

1 if a<b in both AND-type andoRr-type neuro-fuzzy inference
4 Fodor .

max{l-a,b} if a>b systems.
s | sha {1 if a<b 4) Through computer simulations we show that Mamdani-
P 0 if a>b type systems are more suitable to approximation prob-

1 if a=0 lems, whereas logical-type systems may be preferred for
6 | Goguen mm{l,ﬂ} if a>0 classification problems. Moreover, we observe that the

_ a most influential parameters in FLEXNFIS are certainty
7 | Gadel JUif as<b weights (introduced in this paper in a novel way) in

b if a>b . , :

: connectives of antecedents and in aggregations of rules.
8 | Yager bla ‘: “=g They significantly improve the performance of NFIS in

g a> the process of learning.
9 |Zadeh m‘”‘{m‘“{“’b}’l{za} ) This paper is organized into eight sections. In the next sec-
10 | Willmott mm{ {Tb ;;l;{l’_a b}}} tion, we discuss and propose various flexibility issues in NFIS.

e, 2 . In Section lll, a formal description of NFIS is presented, which

also provides a general architecture [Fig. 2 and formula (44)] of

) ) all systems (flexible and nonflexible) studied in this paper. In
It was emphasized by Yager [64], [65] that “no formal reasogection IV, we introduce an H-function and give a framework

exists for the preponderant use of the Mamdani method in fuzgy the description, unification and development of NFIS. The
logic control as opposed to the logical method other than iBx-type andanp-type FLEXNFIS are studied in Sections V and
ertia.” Moreover, Yager said [66] that “as a matter of fact thgy, respectively. Section VIl shows the simulation results and
Mamdani approach has some disadvantages: its inability to digmparative studies with other neuro-fuzzy systems. Conclu-
tinguish more specific information in the face of the rules spafjons and discussions are drawn in Section VIII.

the whole input space.” This statement was an inspiration for us
to determine the type of fuzzy inference (Mamdani or logical)
in the process of learning. We decided to study the problem, de- )
spite the widely held belief about the inferiority of the logicaf®- AND-Type Compromise NFIS

Il. FLEXIBILITY IN NFIS

method (see Remark 2 in Section Ill). Obviously, the Mamdani and the logical systems lead to dif-
In this paper, we present a novel approach to fuzzy modelirfgrent results and, in the literature, there are no formal proofs
The novelty is summarized as follows. as to which of them is superior. Therefore, Yager and Filev [67]

1) We propose a new class of NFIS characterized by auf@roposed to combine both methods. BEn@-type compromise
matic determination of a fuzzy inference (Mamdani/logNFIS is characterized by the simultaneous appearance of Mam-
ical) in the process of learning. Consequently, the strudani-type and logical-type systems. In this paper, we study the
ture of the system is determined in the process of learnirfgllowing combination of “engineering” and fuzzy implications
This class is based on the definition of an H-function
which becomes a T-norm or S-norm depending on a cer- I(a,b) = (1 =A) T {a,b} + AS {1 —a, b} (10)
tain parameter which can be found in the process ofe_g_’
learning. We refer to this class ag-type fuzzy systems.

2) We developanD-type neuro-fuzzy inference systems by I (a,b) = (1 — A\) min {a,b} + Amax {1 —a,b}.  (11)
making use of the concept of flexible structures studied by
Yager and Filev [67]. TheND-type fuzzy inference sys- N Section VI, we develop compromise NFIS based on formula

tems exhibit simultaneously Mamdani and logical typ€L0)- It should be emphasized that parametean be found in
inferences. the process of learning subject to the constraint A < 1. In

3) We introduce Section VII, based on the input-output data, we learn a system

« softness to fuzzy implication operators, to aggregdyPe starting from\ = 0.5 as an initial value. The behavior of
tion of rules and to connectives of antecedents; theAND-type compromise NFIS is depicted in Table II.

« certainty weights to aggregation of rules and to con-
nectives of antecedents; B. oRType NFIS

« parameterized families of T-norms and S-norms to OR-type NFIS have recently been proposed by Rutkowski
fuzzy implication operators, to aggregation of ruleand Cpalka [46], [47]. Depending on a certain parametiis
and to connectives of antecedents class of systems exhibits “more Mamdan{ & » < 0.5)
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TABLE 11l TABLE IV
OR-TYPE SYSTEM BASIC TRIANGULAR NORMS
v System No Name g—norm
~-norm
0 Mamdani type
1 logical type . T, {a,.a,} = min{a, a,}
05 undefined 1 | Mamdani S, {a,a, } = maxla, a,)
(0,0.5) “more Mamdani” T {a p }—a P =
(0.5,1) “more logical” 2 | Product I S
SP{al'a2}= a, +a,-a,a,
3 | Lukasiewi T,{a,a,}=max{a, +a, -1,0}
. . UKasiewicz .
or “more logical” 0.5 < v < 1) behavior. At the bound- S {a,.a,}=minfa, +a,,1}
aries the system becomes more of a Mamdani-type=( 0) I {ana }={ 0 if S, {a,a,}<1
or logical-type ¢ = 1). The definition of OR-type systems Drastic N e} it S, {aga)=1
heavily relies on the concept of an H-function (see Section IV 5, fava }={ 1 if 7T,{a,a,}>0
and Rutkowski and Cpalka [46], [47]). The H-function exhibits Sufava} it T,{a,a,}=0

the behavior of fuzzy norms. More precisely, it is a T-norm for

v=0 glnd S-gorm fow gfl' For0 <wv ; OHSfthe H-function 0 761 Alsina, Dombi, Dubois-Prade, Frank, Hamacher,
LEI"SGm ;sa -ncl)rm an _Im‘() <v<ltheH- unggn resem- I_Schweizer—SkIar, Sugeno-Weber, and Yager families [28].
es an S-norm. In a similar spirit, we construct OR-type Impli- | 5,14 be noted that these parameterized families include

catlpns. The parametercan be found in the process of Iearnlnqhe triangular norms listed in Table IV. For example, the Dombi
subject to the constrait < » < 1. In Section VI, based family is defined as follows:

on the input-output data, we learn a system type starting from .
v = 0.5 as an initial value. The behavior of tlu®-type sys- 1) the Dombi T-norm

tems is shown in Table Il (see Section IV for details). Observe Tp{a} ?f p=0
that this system-contrary to theuD-type system-does notex- < = T {a} L !f p=0o0 16
hibit simultaneously Mamdani and logical features. It is strictly Tp{aip} = N if pe(0,00) (16)
anoRr-type system. Ther-type NFIS are studied in Section V. 1+ (Z ( o ) )
C. Soft NFIS where?D stands for the T-norm of a Dombi family pa-
The soft versions of operators (8) and (4) were proposed by  rameterized by
Yager and Filev [67]. They are defined as follows: 2) the Dombi S-norm
L Sp {a} if p=20
T{a;a} =(1—a)— a; + ol {a (12) o Su {a} if p=o0
tasad = ( )n; ta} Splajp} =4 1- . L 75 1fp € (0,00)
and 1+ (ZI (1a—)p>
Lo - a7
S{ajal=(1-a)= Z a; + aS {a} (13) where § p stands for the S-norm of a Dombi family pa-
nia rameterized by.
wherea € [0, 1]. The parametep € [0,00) can be found in the process of

In the same spirit, we define softening of “engineering im #_earning.
cation” (3) by P g g gimp Obviously formula (16) defines the “engineering implica-

. tion.” Combining (6) and (17) we get the fuzzy S-implication
I(a,b;8) = (1-p) 5 (a+b) + 6T {a,b} (14) 9enerated by the Dombi family :

1+ ((lza)p—l- (ﬁ)p)l/p.

The NFIS realized by parameterized families of T-norms and

and logical “fuzzy implication” (6) by Ip(a,b;p)=1- (18)

f(a,b;ﬂ):(1—ﬂ)%(1—a+b)+ﬁ${l—a7b} (15)

whereg € [0, 1]. S-norms are studied in Sections V-B, V-C, VI-B, and VI-C.
The soft compromise NFIS are studied in Sections V-B, V_CE. NFIS Realized by T-Norms and S-Norms With Weighted
VI-B, and VI-C.
Arguments
D. NFIS Realized by Parameterized Families of In this paper, we propose the weighted T-norm
T-Norms and S-Norms T {ay,a9;wi,we =T{l —wy (1 —ay),1 —wy (1 —ag)}.
Most fuzzy inference structures studied in the literature em- (29)

ploy the triangular norms shown in Table IV. There is only a litti®arameters,; anda, can be interpreted as antecedents of arule.
knowledge within the engineering community about so-calléthe weightss; andws are corresponding certainties (credibil-
parameterized families of T-norm and S-norms. They includiges) of both antecedents.
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Observe the following. [ll. FORMAL DESCRIPTION OF THENFIS

1) If wy = wy = 1, then the weighted T-norm (19) is re- | this paper, we consider multi-input-single-output fuzzy
duced to the standard T-norm. In the context of linguistiQr|s mappingX — Y, whereX ¢ R" andY c R.
values we assign the truth to both antecedentanda;  The fuzzifier performs a mapping from the observed crisp

of the rule. input spaceX C R™ to the fuzzy sets defined i . The most
2) If wy = 0, then commonly used fuzzifier is the singleton fuzzifier which maps
T* {a1, a2;0,ws} =T {1,1 — ws (1 — a»)} X = [Z1,...,7Z,] € X into a fuzzy setd’ C X characterized
1w (1—as). (20) by the membership function
Therefore, the antecede_m_is dis_carded since its cer- par (x) = {(1) :I i ; z . (25)
tainty is equal to zero. Similarly, v, = 0 then the an-
tecedent:; vanishes The fuzzy rule base consists of a collectiol\bfuzzy IF-THEN
T* {a1,a2;w1,0} =T {1 —wy (1 — ay), 1} rules, aggregated by disjunction or conjunction, in the form
=1—un (1 — al) . (21) IF Tr1 ?S AI}: AND
3) If 0 < wy < 1and0 < wy < 1 then we assume a partial R™) . ;2 :z ﬁ% AND.... (26)
certainty of antecgdent& andas. . . THEN y is B¢
The S-norm corresponding to the T-norm (19) is defined as fol-
I . or
ows:
k) . e Ak i« Rk
§* {a1, az; wy, w2} = S {wia1,waaz} . 22) R® . IFxis A* THENyis B (27)
In the same spirit we propose the weighted triangular nornygherex = [z1,...,2,] € X,y € Y, A% = A x A5 x. .. x AL,
g W Y (T agr 03 Ak Ak A are fuzzy sets characterized by membership
{ar, az;wi™, wy™ } = S {w™ a1, w,™ az} (23) functionsyi i (z;),i = 1,...,n, k = 1,..., N, whereasB*
and are fuzzy sets characterized by membership functigns(y),

respectivelyk = 1,..., N.
e agr The fuzzy inference determines a mapping from the fuzzy
=T{l1-w* (1 —a1),1—wy® (1 —a2)} (24) sgetsin the input spack to the fuzzy sets in the output space
to aggregate individual rules in Mamdani-type and logical-typ¥. Each ofN rules (26) determines a fuzzy @t cy given
systems, respectively. The weights andw, in (19), as well by the compositional rule of inference
aswi® andw3®" in (23) or (24), can be found in the process of — . . .
learning subject to the constraints, ws, w}e", w38 € [0,1]. B" = Ao (A" - BY) (28)
In Sections V-C and VI-C we apply the weighted T-norm a%hereA’“ — Ak x Ak x oo x AE,
to a selection of significant |r_1puts,_ and the weighted S-norm Fuzzy set", according to the formula (28), are character-
(23) or T-norm (24) to a selection of important rules. The results . .
. . . . . 1ized by membership functions expressed bygtp-starcom-
are depicted in the form of diagrams in Section VII (dark areas_ ...
. . position

correspond to low values of weights and vice versa).

R_em_ark 1: It was pointed out by one of the reviewers thqt i (y) = sup {MA, (%) * fiab ooyt (X, y)} (29)
designing of neuro-fuzzy systems should be a compromise xeX ! "

between accuracy of the model and its transparency. The Mege . can be any operator in the class of T-norms. It is easily
sure of accuracy is usually the RMSE-criterion (apprommahogéen that for a crisp inp&t € X, i.e., a singleton fuzzifier (25),
problems) and percentage of correct or wrong decisions (Claﬁﬁ'l’mula (29) becomes

fication problems). The measure of transparency is the number

and form of fuzzy rules obtained. It was mentioned by several 1k (Y) =farx..xat—pr (X, 9)

authors (see, e.g., [1] and [14]) that the lack of transparency is a =par g (X,)

major drawback of many neuro-fuzzy systems. Most designers B _’

focus their effort on approximation accuracy, while the issue =1 (par (%), ppe (y)) (30)

of transparency has received less attention. In this context QHerel(-) is an “engineering implication” or fuzzy implication.
method of weighted triangular norms seems to be a promisingrhe aggregation operator, applied in order to obtain the fuzzy
tool for extracting both transparent and accurate rule-basgd p’ hased on fuzzyseﬁk, is the T-norm or S-norm operator,
knowledge from empirical data. More specifically, diagramge ending on the type of fuzzy implication.

(weights representation) presented in Section VII can be US€Grhe gefuzzifier performs a mapping from a fuzzy Bétio a

for the analysis and pruning of the fuzzy-rule bases in all t'?,‘?isp pointy in Y C R. The COA (centre of area) method is
simulation examples. The FLEXNFIS realized by T-norms angfined by the following formula:

S-norms with weighted arguments are studied in Sections V-C
and VI-C. Note that our application of weights in NFIS is -~ Sy v s (y)dy
different from those studied in [16], [36], [55], and [69]. v= fY pp (y)dy

agr

T* {a1, az; wi®, wys"}

(31)
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A. Nonflexible NFIS: Mamdani-Type

In this approach, the implication (30) is a T-norm (e.g., min-
imum, product, Dombi)

I(par (%) pps (7)) = T {par (X), ppe (y")} - (36)

By
By o
‘/\— and the aggregated output fuzzy &tC Y is given by
N N
pe(7) = 8 {upe (7)) = S AT {nas (%), npe (7)1}
B,

1 (37)
, Consequently, (32) takes the form
A N B N n _ o
MN : ) o v 3 AT{ 4 fua @} im0}
y="= — — . (38)
Fig. 1. lllustration of inference based on the binary implication, and Zadeh, N N T n = —
product, and Lukasiewicz aggregations. rgl k§1 izl H Ak (Zi) ¢ ke (T7)
Obviously, the T-norms used to connect the antecedents in the
or by rule and in the “engineering implication” do not have to be the
same. Besides, they can be chosen as differentiable functions
N L, like Dombi families.
L) Remark 3: If
Y= 7N ~ (32) 1) the implication is of a Mamdani-type;
> 15 (g") 2) ppr (57) = 0fork # r;

then formula (38) reduces to the well-known fuzzy system
in the discrete form, wherg™ denotes centres of the memberstudied by Wang [58]
ship functionsup- (y), i.e., forr =1,...,N N

_1§T 'ii {MA: (fl)}
wer (07) = g tumr )} (33) == (39)
J X 4 s )}

For other definitions of the defuzzifier, the reader is referred to

[7]. B. Nonflexible NFIS: Logical-Type
Remark 2: Several authors (e.g., Jager [18], Mendel [35]) : T - P

reported problems with the application of logical implicationﬁ Ir:]i;h[;:?grﬁmh' the fuzzy implication (30) is an S-implica-

to NFIS. A major problem is caused by the indeterminant par?

of the membership function. We illustrate such a situation in £ (ax (X), e (§7)) = S{N (pax (X)), npx (§7)}  (40)

Fig. 1, showing the inference for binary implication (7). The.g., binary implication (known as the Kleene—Dienes implica-

aggregation is performed by making use of Zadeh T-nBip, tion)

product T-normB}% and Lukasiewicz T-nornB7, as listed in I - ey 1 - e

Table IV. Observe that there is no indeterminancy in the case of (rar (%), ppe (7)) = max {1 — par (%), upe (§7)}

V. & . . 41)
Lukasiewicz T-norm applied to aggregation. L (
The indicated problem can be easily resolved by the applic-<[;1r—]e aggregated output fuzzy g8t C Y is given by
tion of a modified center of gravity defuzzifier e () = é\l {upe (7))
k=1
N
g Jxa e @) —a)dy 24 = T {S{N (uar (®) e (1))} (42)
y= (34) k=1

pe (y) —a)dy
fY“( » (v) ) and formula (32) becomes

where % g -ki {S {N <,§1 {uAf (:m)}) s Bk (37)}}

r=1

Y. ={ye Yium(y) > a). S P {s{w (4 fnar @}) om0}

The valuex € [0, 1] describes the indeterminancy that accom- r=1h=t (43)

panies the corresponding part of information. It is easily seennow, we generalize both approaches described in points

that in order to eliminate the indeterminant part of the membeynq p and propose a general architecture of NFIS. It is easily

ship functiony.p, (y), the informative part has to be parallelyseen that the systems (38) and (43) can be presented in the form
shifted downward by the value af Neuro-fuzzy inference sys-

tems olf a Io%ical-ti/.pe with defuzzifier (34) have been studied by é_v:l 7" - agr, (X,7")

Czogala an Les < [7]_. _ g=f(%) =" — (44)
Depending on implication (30), two types of NFIS can be (%,77)

distinguished. 2, aer, (%9
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X 41 (i) o

X, 7,(%x)— 2

Fig. 3. 3-D plot of function (53).

instance, the parametegs, » = 1,..., N, are trained by the
iterative procedure

. . Oe (t
P =5 ()~ (49)
Fig. 2. General architecture of NFIS studied in this paper (flexible and . . o . . . .
nonflexible). Directly calculating partial derivatives in recursion like (49) is
rather complicated. Therefore, we recall that our NFIS has a lay-
where ered architecture (Fig. 2) and apply the idea of back propagation

N _ to train the system. The exact recursions reflect that idea, how-
S {Ix,» (%,9")}, for Mamdani approach ever, they are not a copy of the standard backpropagation. For

agr, (X,9") = N details, the reader is referred to our previous paper [47].
T {I.,(%x,9")}, forlogical approach
k=1
(45) IV. FRAMEWORK FOR DESCRIPTION UNIFICATION, AND
and DEVELOPMENT OFNFIS
I, (X,9") In this section the following properties of dual T-norms and
_ {T{Tk (), pupr (7"} for Mamdani approach ~ dual S-norms will be used
T S{N (1 (X)), pgr (F" for logical approach
{N (e (%)), 1pr (57)} gical app ) T{a} =N (S{N (a1),N (as),...,N(a,)})  (50)

S{a} =N (T{N (a1),N(az2),...,N (a,)}). (51
Moreover, the firing strength of rules is given by ta) (TN (ar). N (az) (@) (G1)
_ n - Our goal is to find a framework for the description, unification
e (%) = I {/‘Af‘ (xi)} : (47) " and development of all systems studied in this paper. We achieve
The general architecture of (44) is depicted in Fig. 2. this goal using two definitions (see Rutkowski and Cpalka [46]).

Remark 4: It should be emphasized that (44) and the schemeDéfinition 2. (Compromise Operator)A function
depicted in Fig. 2 are applicable to all the systems, flexible and N, [0,1] — [0,1] (52)
nonflexible, studied in this paper with different definitions of vy ’
agr, (X,7") andl . (X,7"). Nonflexible systems are describedyiven by
by (44), (45), (46) and (47), whereas flexible systems by (44)

andagr, (%,7"), I (X,7"), 7 (X) defined in Sections V and N, (a) =(1 —=v) N (a) + vN (N (a))

VI. How we define the aggregation operatasr,. (X, ") and =(1-v)N(a)+va (53)
the implication operatofy, . (X,3"), depends on the particular

class of the system. is called a compromise operator where [0,1] andN(a) =

Remark 5: It is well known that the basic concept of theNo(a) = 1 — a.
backpropagation algorithm, commonly used to train neural net-Observe that

works, can be also applied to any feedforward network. Let N (a), forv=0
% (t) € R™ andd (¢t) € R be a sequence of inputs and de- Ny(a)=1{ 1 ' fory = 1 (54)
sirable output signals, respectively. Based on the learning se- v ;’ for v — 12 '

quenceg(x (1),d (1)), (X(2),d(2)),... we wish to determine
all parameters (including the system’s typer A) and weights Obviously, functionV, is a strong negation (see, e.g., [28]) for

of NFIS such that v = 0. The 3-D plot of function (53) is depicted in Fig. 3.
1 _ . i i _
e(t) = = [f(X(t) — d(t)]2 48) Remark_ 6 _The formula (50) can be rewritten with the nota:
2 tion of definition 2

is minimized, weref () is given (44). The steepest descent op- . . . .
timization algorithm can be applied to solve this problem. For 1" {a} = No (S {NO (a1),No(a2),-..,No (an)}) (55)
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for v = 0. Apparently
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b) (")

forv = 1. . 08
The right-hand sides of (55) and (56) can be written as fo , 04 o
lows: ' '

with v = 0 or v = 1. One may wish to vary the parametein
(57) from 0 to 1. This concept leads to the following definition
allowing us to switch smoothly between S-norm and T-norm:

5, (5 {3 @)})

Definition 3. (H-Function): A function

given by

H(a;v)=N, (ﬁl {N,,(ai)}) =N, (g"l {Nl_,,(ai)})

H:[0,1]" — [0,1]

is called an H-function where € [0, 1].
Observe that

ab;
It is easily seen that fab < v < 0.5 the H-function resembles a)’(v )
a T-norm and fol0.5 < v < 1 the H-function resembles an

S-norm.

Example 1. (An Example of H-FunctionVe will show how
to switch smoothly from T-norm to S-norm by making use of
definition 3. Letn = 2 and the standard min-norm and max-

T{a}, forv=
H (a;v) = %, forv =
S{a}, forv=

conorm are chosen

H (a1,a2;0) =T {a1,a2} = min{ay,as}
H (a1,a2;1) =S{a1,a2} = max {a1,a2}.

The H-function generated by formulas (61) and (62) takes th

form

H (a1,a2;v) =N1_, (min {leu (a1), N1 (02)})
=, (max { N, (a1) . ¥, (1) })

and varies form (61) to (62) asgoes from zero to one.
In Fig. 4, we illustrate function (63) far = 0.00, v = 0.15,

v = 0.50, v = 0.85, v = 1.00.

Example 2. (An Example of H-Implication)n this example,
we illustrate how an H-implication based on definition three

—o= O

(57)

(58)

(59)

Fig. 4. 3-D plot of function (63) for (ay = 0.00. (b)~ = 0.15.(c)r = 0.50.
(60) (d)v = 0.85.(e)v = 1.00.

(61)
(62)

63 V)

changes from “engineering implication” (1) to fuzzy implicagy 5 3.p piot of function (66) for (ay = 0.00. (b)v = 0.15. (¢) = 0.50.

tion (7). Let

and

Ieng (a,b) =H (a,b;0)
=T {a,b}

=min {a, b}

Ifuzzy (av b) =H (NO (a) 7b; 1)
=S{N (a),b}
=max{N (a),b}.

(d)yr = 0.85. (e)v = 1.00.

Then
(64) I(a,b;v)=H (Nl_,/ (a),b; 1/) (66)

goes from (64) to (65) ag varies from zero to one.
In Fig. 5, we illustrate function (66) far = 0.00, v = 0.15,
v = 0.50,v = 0.85, v = 1.00.
Remark 7: It is easily seen that the nonflexible NFIS given
(65) by formulas (45)—(47) can be alternatively presented by making
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use of definition 3 withv = 0 or v = 1, shown in (67)—(69) at - - _ .
the bottom of the page. Ly (%,97) =| (L = af) avg (Nl_,, (7 (X)), npe (¥ ))
V. OR-TYPE FLEXNFIS ol <N1 v (T (X)) 1o (47) )) (74)
The or-type NFIS are based on definition 3 of the H-func- il

tion. All the systems in this section are described by a general = agr -
formula (44), see remark 4, with various definitionsrpf(x), #8"r (%3") =| (1-a )an(Il P&y, I Ry ))

Ik,T ()—(7?7) anda‘grr ()—(7?71“) = —r = —r
~|—C¥agr§ (Il,T (X/y )aig'r'WIN,T (X,y )a))

A. Basic NFISORType P&l —v
The basic neuro-fuzzy system of ar-type is given as fol- (75)
lows: Observe that system (73)—(75) is
OR1 1) soft Mamdani-type NFIS for = 0;
e (71) o (Zn); 2) soft logical-type NFIS for = 1;
(%) =H (“Al 1 0 Hal \Tn ’) (70) 3) soft like Mamdani-type NFIS fob < v < 0.5;
. ~ 4) soft like logical-type NFIS fof.5 < v < 1;
L (%,77) =H ( 1 (T (Xl)/) 08 (?f);> (71 5 undetermined for = 0.5.
agr. (2.57) =H L, (%9, I (R 7)) 72) C. Weighted Soft NFISRType
8y WY ) = 1—v We insert weights to the antecedents and to the aggregation
Observe that system (70)—(72) is Mamdani-type:fes 0, like operator of the rules in systeorll:
Mamdani-type forv € (0,0.5), undetermined for = 0.5, 1) wi, €0,1,i=1,....,n,k=1,...,N;
like logical-type forv € (0.5,1) and logical-type for = 1. 2) w agr € 0,1],k = 1. . .7N.

It is worth noticing that parametercan be learned and ConseConsequently we get the weighted soft NFIS obatype
quently the type of the system can be determined in the process

of learning.

B. Soft NFISoOR Type 7 (%) = ((1 —am)avg (ia (21) - g (7))

In this section we propose soft NFIS based on soft fuzzy
norms (12) and (13). These systems are characterized by = (e (%1) (Z);

1) soft strength of firing controlled by paramete¥; +a’H* < T A ’) (76)

2) soft implication controlled by parameter; " '

3) soft aggregation of rules controlled by paramet&s*. . ; W _ L
Moreover, we assume that fuzzy norms (and H-function) in th-" P77 = (1-a)ave (Nl*” (7 (%)) s e (7 )>
connection of antecedents, implication and aggregation of rules .
are parameterized by parameters p’, p*', respectively. I <N1u (7 (%)), g (T7) ;) 77)
We use notationH (-) to indicate parameterized families
analogously to (16) and (17).

The soft compromise NFIS of apr-type are defined as fol- agr, (%,7") = <(1_aagr) avg([“, (&G s Ine (R, gr))
lows:

ORII +aagr§*<1%(g,gr>7,, n (R,77) >>

1 —-v

™ (X) = ((1 —a’)avg (MA’; (1) -5 par (fn)> (78)

= <MAA (Z1) .oy prar (Tn) ;) (73 In the ORIIl system we use parameterized familj%@) and
parameterized families with weighis*(-) analogously to (19).

7 (R) =H (pag (1) - g () :0) (67)
H (1\71 (1% (X)), upr (T") ;0) for Mamdani approach
Iy (R,77) = - (68)
H (NO (16 (X)) s upe (T7) 5 1) for logical approach
e JHL(XZT),...,In- (X, 5");1) for Mamdani approach
agr, (%,7") = { H (I, (%7, In,(X,7");0) forlogical approach (69)
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More specifically, in (76) and (78), we use the following definiB. Soft NFISAND-Type

tion: In this section, we propose soft compromise NFIS based on
o a1y .-y Oy soft fuzzy norms (12) and (13).
Wiy, W, P,V The soft compromise NFIS of axnD-type are given by

D,V

AND IIa
where
Tk (%)

= ((1 —a’)avg (“Aﬁ' (T1)sevesprar (fn))

., arg, (an, Wy, v) ;) (79)

arg; (a;, wi,v) = (1—v) (1 —w; (1 — a;)) + vw;a;. (80)

VI. AND-TYPE NFIS

par (Z bl Tn);
In this section, we studynD-type neuro-fuzzy inference sys- +a'T { Ar ap (@) }) (87)
tems. They will be presented in two alternative forms: by using ~
T and S-norms or by using an H-function with= 0 orv = 1. 9")
A. Basic NFISAND-Type = ((1 —a')avg (Nl—)\ (7 (X)) , e (Z?T)>
The basic neuro-fuzzy inference systems ofgn-type em- o e (R), g (77)
ploy combinations of “engineering” and fuzzy implication, see, +« <( A) 1 eng < ’pIB ’)

e.g., (10) and (11). The systems are given by the formula:
< 7k (%), ppe (§7) 5
+ A fuzzy ( ol ))) (88)
7% (%) =T { far (71) - (;m} (81) agr, (%, 7")
:((1 — agr)avg(llr(x 7). Ny ()_c./yr)>

Iy (R,97) = ((1 ~A) Leng (Tk (%) s (zf))
e (-5 { o e 1)

agr
pg

+AT{I“ &) (i:yrﬁ})). (89)

p

-+A1mmy(m(x)ﬁn%(yw)> (82
agr, (%,7") = ((1—)\) S{IM (& 7")se o Iy (x,g’“)}

+)\T{I1,r (X 7") s Iny (i,yT)}) Formulas (87)-(89) describe the soft compromise NFIS —
AND-type in terms of parameterized familigg and S. Al-

(83) ternatively, this system can be presented by making use of the
or H-function definition
AND Ib
T <)—(> :H<NA§' (9751)7--0-711,45; (xn)a> (84)
% () e (77) A
. _ 1\ Tk Krpe Y )3
B (597) = ((1 NH ( 0 ) = ((1 —a’)avg (MA’; (Z1),. .- par (fn))
N, Tk ()_() » Bk (gr) ) 7).
+/\H( 0( )1 B )) (85) o H(/Ak( 1) ]-J-T;E)/AA,& (m,)) (90)
agr, (X,77) = ((1_)\) H (h,T (x,9"),. 1 v (X,77) ;> Lo (.97
= —af)av Vi_y (73 (X)), k
+AH<hﬂ@yw Jmewy> ‘(“ o) vt (Nia (2 () e (1))
! (g (N ) e (77)
(86) + o (( - )H 170 )

Itis easily seen that the above system is of a Mamdani-type for 5 (1\70 {7 (i)2 g (F7) }> 91)
A = 0 and logical-type for\ = 1. p,1
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agr, (X,9";) TABLE V
EXPERIMENTAL RESULTS

= ((1 - aagr) avg (Il,’l‘ ()_(7 gr) 3o 7IN,7“ ()_(7 y'r))

% - o -
pant II,T ()_(7gr)7"'7IN,T ()—(,gT) = E g g
Magr((l”)H( P, 1 ’ - i -« =
’ s Es | =2 2l as
- — - — - 9 o
+A§{I“ (Fo73), oo v (X’yT);D). (92) g gé g | 3: =
P =l 2 & ff BE B0
C. Weighted Soft NFISXND-Type ; v 0.5 10000 | 6.66% | 7.81%
Introducing weights to soft NFIS we get the weighted soft
NFIS of anAND-type ii p) 0.5 1.0000 | 7.33% | 7.81%
AND IIIa iii v 0 - | 1000% | 7.81%
T (X) v 0.5 | 1.0000
P 10 9.9953
]
= —a” (T (T ) 10 9.9998
<(1 a”)ave (“Ai (@) pray (x")) v| p# 10 | 99999 | 333% | 625%
a 1 0.9576
2 an (1) 5o pan (Tn) s o 1 0.9931
et { 1wfka-~-a;02k7p7 ’ (93) o 1 0.8482
- ’ ’ v 05 | 1.0000
Iy (X,97) P’ 10 | 9.6501
. P 10 9.9997
= (1- o) avg (Nl_,\ {7 (R)}, e (g’“)) e | 10 | 99836
v o 1 0.9213 | 2.00% | 6.25%
o = = . o 1 0.9939
+af ((1 —\) Teng <T’“ (%) e (7 )’> o 1| 08456
p w* 1 Fig. 6
- = (T - w' 1 Fig. 6
+A1fuzzy<7’“(x)’z,B’” v )>)> (94)
agr, (X,¥")
=[(1—a®" I (x5%),..., Iy, (X, ¥" TABLE VI
<( Q@ ) avg( 1,r (X, y ) ’ y LN r (va )) COMPARISON TABLE
agr _ T ’ ’ ) ,r ) )
+ « <(1 )\)S < wigr7...7w?\§r’pagr
< ([ (XF),. .., Ins (X, 5°); e -
+ AT < L (X/a%’r ) aé\rr’ gj; ) ’)) . (95) . Zadeh T, {a,.a, }=min{a,a,}
e Su{a,,a2}=max{a,,a2}
Alternatively, it can be expressed by 2 | Product T{a,a,}=aa,
Sp{auaz}=a1 +a, -a,a,
AND IIIb 3 Lukasiewicz T"{al'az}=m;.i)({al T, _LO}
_ SL{apaz}=mm{a1 +azvl}
7 (%) e a}_{ 0 if Sy{aa)<l
prvT I, {apa,} if S, {a.a,}=1
_ T . = - . M 2 M 141G,
o ((1 “« ) avg (uAlf (xl) T 7NA£: (xn)) 4 Drastic s {a a }={ 1 if Tu{ﬂpaz}>0
B B P su{avaz} if TM{a1'“2}=O
tor (MA;T(M) e at 7(_3771) ;) (96)
WY s veoy Wy P, 0
Ik’r (i’ gr) agr,. ()_(7 gr)
= ((1 — o) avg (Mioa (0 (R) e (1) - ((1 — o) avg (I, (%,5%) - I (,57))
I _ e ~1 (Tk ()_())7/1'B’”' (gr)’ agr _ o Il,r (ivgr)v"wIN,r ()—(’gr);
+a <(1 AN H ol +a™((1-XN)H WOt e ]

0
T <N1 (7 (5) 7{% &) >>> o) i <11,T (&9, I (%,57) ))) (98)

agr agr
wio, ..., wy P 0
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W | weer TABLE VIII
COMPARISON TABLE
Method Tf:tmg
cc.
Gonzalez and Pérez (CN2) [15] 83.96
Gonzélez and Pérez (C4.5) [15] 86.50
Gonzalez and Pérez (LVQ) [15] 87.90
~ Gonzélez and Pérez (SLAVE[2]) [15] 82.40
s Gonzilez and Pérez 85.40
& (SLAVE[2] with OR and AND) [15] )
1 Gonzalez and Pérez (SLAVE[2] with OR, 90.90
~ AND and Generalization) [15] )
Gonzalez and Pérez 91.80
(SLAVE[2] with all operators) [15] )
our result 92.38
- TABLE IX
i=1...,9 | EXPERIMENTAL RESULTS

Fig. 6. Weights representation in the Glass Identification problelm &<

’ 5 o

[0,1], wi*" € [0,1],7 = 1,...,9,k = 1,...,2 (dark areas correspond to 2 E‘ § '§
low values and vice versa). 5 B o =
= 7 »n en — T
= b= o wn & S o 9 2

= = — E Q= pas] 8 i

o = 5 < 8 E

0N By @0
E| B8 > 3 g e 2 o
TABLE VI t| s = - s g -
- ® = )
EXPERIMENTAL RESULTS = 5 = = 82 =5 = 7
@l Za | £ 5 sE ==

o
2 2 . 1.90% | 6.66%
E| = g B
251 02 " w | 2 — 8
=| % g BE | 58 | §° i| 2 0.5 | 1.0000 | 1.90% | 6.66%
§] 2& = 5 = | =38
Elec | 8 | w8 g8 g_
2| 8 g : = | 8E | 25 T 0 - 476% | 11.11%
3 = 2= = 5 28
gl 228 | = £% | 2= | 52 - 500
, P’ 10 10.0041
i v 0.5 1.0000 | 4.87% | 9.52% o 10 9.9879
T 10 9.9834 | 1.90% | 4.44%
ii A 0.5 1.0000 | 4.87% | 9.52% : 1 0.9003
d 1 0.9914
iii v 0 - 35.77% | 36.19% a 1 0.9517
v 0.5 1.0000
v 0.5 1.0000 P’ 10 10.0033
P’ 10 9.9185 P 10 9.9950
P 10 9.9999 pE 10 9.9836
iv| p* 10 9.9999 | 2.43% | 9.52% v o 1 0.9080 | 0.00% | 2.22%
o 1 0.0000 o 1 0.9974
o 1 0.9620 o 1 0.9582
o 1 0.9922 w’ 1 Fig. 7
y 0.5 1.0000 W 1 Fig. 7
P’ 10 9.9052
Vi 10 9.9997
pe 10 9.9954 ; ;
v o | 00000 | 2.43% | 7.61% use of_ commonly known benf:hmarks. Each of the simulations
o 1 0.9598 is designed in the same fashion:
s 1 0.9883 1) Inthe first experiment, based on the input-output data, we
s i - learn the parameters of the membership functions and a
w =

system types € [0, 1] of theor | neuro-fuzzy inference
system. It will be seen that the optimal values otleter-
mined by a gradient procedure, are either zero or one.
2) In the second experiment, we learn the parameters of the
We have conducted very extensive simulationsin ordertotest membership functions and a system type [0, 1] of the
our new structures, find an appropriate system type and compare AND | neuro-fuzzy inference system. It will be seen that
the results with other authors. The results are summarized and optimal values of\, determined by a gradient procedure,
discussed in Section VIII. We present 11 simulations by making  are either zero or one.

VIl. PERFORMANCEEVALUATION
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TABLE X TABLE XI
COMPARISON TABLE EXPERIMENTAL RESULTS
Method ITesting 5 _
Acc. 2 2 9
Gonzalez and Pérez (CN2) [15] 94.16 S _'T.‘; 5
Gonzélez and Pérez (C4.5) [15] 92.70 = g s @ ED %
Gonzalez and Pérez (LVQ) [15] 95.70 i =5 2 s € 2
Gonzalez and Pérez (SLAVE[2]) [15] 95.70 = E *g c : m 8
Gonzalez and Pérez 95.70 2 B2 = = 5 %’ =
(SLAVE[2] with OR and AND) [15] g5l 2z & = iz 9 S
Gonzélez and Pérez (SLAVE[2] with OR, 95.70
AND 'and Gener’alization) {15] i v 0.5 0.0000 0.1021
Gonzalez and Pérez 95.70
(SLAVE[2] with all operators) [15]
our result 97.78 ii A 0.5 0.0000 0.0915
iii v 1 - 0.1265
T agr
d I w v 05 | 0.0000
P 10 9.8804
4 10 9.9752
iv| p¥ 10 9.5912 | 0.0857
o 1 0.0331
1 0.9741
ot 1 0.7611
N v 0.5 0.0000
)2 10 9.9513
- P 10 9.9699
l i 10 9.4197
v a’ 1 0.1250 0.0739
1 0.9612
l'ad 1 0.8456
w’ 1 Fig. 8
W 1 Fig. 8
i=1 4 § TABLE XlI
e COMPARISON TABLE
Fig. 7. Weights representation in the Iris problem, € [0,1], wi*" € No of Training
[0,1],¢ =1,...,4,k = 1,...,2 (dark areas correspond to low values and Method rules RMSE
vice versa). Kim et al (SI) [26] 3 0.0935
Sugeno and Yasukawa [52] 6 0.2810
Kim i .
3) In the third experiment, we learn the parameters of the —.= reetsilh(s} it M D[R] i ﬁ,(‘,‘;gi

4

~

5)

membership functions of ther I/aND | neuro-fuzzy in-
ference systems choosing valuesvodnd \ as opposite
of those obtained in 1) and 2). Obviously, we expect Bhe parameters learned in experiments 1)-5) can be determined
worse performance of both systems. Note thaitype DY standard recursive gradient procedures with the constraints
are equivalent taND-type systems iz = A = 0 or listed above. In order to avoid arduous gradient calculations, we
v=)\=1. have developed [47] a universal network trainer that can tune the
In the fourth experiment, we learn the parameters of tlﬁ@rameters and WE|ghtS of FLEXNFIS based on their architec-
membership functions, system types [0, 1] of theor|1l ~ tures. The idea of the trainer comes from the backpropagation
neuro-fuzzy inference system and soft parametérs method. It should be noted that Gaussian membership functions
[0,1], o' € [0,1], a®8" € [0,1]. Moreover, we learn are used in all the experiments.

parameterg” € [0,00), p’ € [0,00), p*&" € [0, 00) of o

the Dombi norm used for the connection of antecedent; Class ldentification

implication and aggregation of rules, respectively. The Glass Identification problem [56] contains 214 instances

In the fifth experiment, we learn the same parameters asind each instance is described by nine attributes (RI: refractive
the fourth experiment and, moreover, the weighfs, € index, Na: sodium, Mg: magnesium, Al: aluminum, Si: silicon,
[0,1],7 = 1,...,n, kK = 1,..., N, in the antecedents K: potassium, Ca: calcium, Ba: barium, Fe: iron). All attributes

of rules and weights;®*" € [0,1], k = 1,..., N, of the are continuous. There are two classes: window glass and non-
aggregation operator of the rules. In all diagrams (weightgndow glass. In our experiments, all sets are divided into a
representation) we separaté, € [0,1],7 = 1,...,n, learningsequence (150 sets) and testing sequence (64 sets). The
k=1,....,N, fromw® € [0,1], k = 1,...,N, by a study of classification of types of glass was motivated by crim-

vertical dashed line. inological investigation. At the scene of the crime, the glass left
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Fig. 8. Weights representation in the HANG problem, € [0,1], w}®" €

0,1,i=1,....,2,k =1 4 (dark areas correspond to low values and

vice versa).

TABLE Xl
EXPERIMENTAL RESULTS

o "
L
21 = 8 g & =
s| =8 = 2 £ %
£ == - 2| i
5l 22| 2 |55 | &
g1 2 & g 25 | 2
i 0.5 0.0000 0.5079
ii 0.5 0.0000 0.4917
iii 1 - 0.6420

0.5 0.0000

10 9.9774

10 9.8540
iv 10 9.2408 0.4232

1 0.0215

1 0.9433

1 0.9686

0.5 0.0000

10 9.9581

10 9.8592

10 9.1067
v 1 0.0590 0.2416

1 09713

1 0.9655

1 Fig. 9

1 Fig. 9
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TABLE XIV
COMPARISON TABLE

No of
inputs/
rules

Training

Method RMSE

Tong [54] 2/19 0.6848
Pedrycz [40] 2/81 0.5656
Xu and Lu [63] 2/25 0.5727
Box and Jenkins [3] 6/- 0.4494
Sugeno and Yasukawa [51] 3/6 0.4358
Wang and Langari [59] 6/2 0.2569
Sugeno and Tanaka [51] 6/2 0.2607
Lin and Cunningham [33] 5/4 0.2664
Kim et al [26] 6/2 0.2345
Kim et al [27] 6/2 0.2190
Delgado et al [8] 2/4 0.4100
Yoshinari [70] 2/6 0.5460
our result 6/4 0.2416

i=1,...6 I

Fig. 9. Weights representation in the Modeling of Box and Jenkins Gas
Furnace problemw? , € [0,1], wi®" € [0,1],i =1,...,6,k = 1,...,4
(dark areas correspond to low values and vice versa).

frequency antennas with a total transmitted power in the order

of 6.4 kW. The targets were free electrons in the ionosphere.

The database is composed of 34 continuous attributes plus the
class variable, using 351 examples. In our experiments, all sets
are divided into a learning sequence (246 sets) and testing se-
guence (105 sets), = 33, N = 2 and after learning all weights

are equal to one. The experimental results are depicted in Ta-
bles VII and VIII.

C. Iris

The Iris data [56] is a common benchmark in classification
and pattern recognition studies. It contains 50 measurements of

can be used as evidence if it is correctly identified. The expef s features (sepal length in cm, sepal width in cm, petal length

mental results are depicted in Table V, Table VI, and Fig. 6.

B. lonosphere

in cm, petal width in cm) from each of three species: iris setosa,
iris versicolor, and iris virginica. In our experiments, all sets are

divided into a learning sequence (105 sets) and testing sequence

This radar data was collected by a system in Goose B##p sets). The experimental results are depicted in Table IX,
Labrador [56]. This system consists of a phased array of 16 higfable X, and Fig. 7.



RUTKOWSKI AND CPALKA: FLEXIBLE NEURO-FUZZY SYSTEMS 567

TABLE XV W' | W
EXPERIMENTAL RESULTS
_fg m
0 2
= = oo 2 g
- & v = g g
21 2 2 S = g &
2 =8 = 2 = o0 2
B e » E o =) 80
B o E = - 48 = O N
3 5 . ~ v £ % = °
gl = ool =8| = :
- Z B = e g = —_
I
i v 0.5 0.0000 0.0375 0.0270 ==
i A 0.5 0.0000 0.0379 | 0.0232
iii v 1 - 0.0381 | 0.0280
v 0.5 0.0000 .
P 10 10.0129 i=1,...,2 |
P 10 9.9789
iv p*¥ 10 10.0819 | 0.0364 | 0.0241 Fig. 10. Weights representation in the nonlinear dynamic plant problem
a 1 0.5893 wl, € [0,1], wy® € [0,1],i = 1,...,2,k = 1,...,5 (dark areas
od 1 0.9996 correspond to low values and vice versa).
o 1 0.9998
v 05| 0.0000 TABLE XVII
p 10 10.0492 EXPERIMENTAL RESULTS
P 10 9.9483
p 10 10.0453 .
v a’ 1 0.5286 0.0328 0.0211 2 - § =
1 0.9947 E| = £ S
o 1 0.9980 2l o % » | -3 | _§
. = = = 3 2 xBEa 2 E‘i é
w 1 Fig. 10 | 8 s 2 £ 7 = 2
a, ) E ‘E ° = = 8 L e L wp
we 1 Fig. 10 = = = > 2 = -g
o § - =/ = 8 2
e| EE = £: | 2 z 2
H| Za = = H == =z
TABLE XVI
COMPARISON TABLE i v 0.5 1.0000 | 21.88% | 22.92%
Noof | Training | Testing .
Method Fules RMSE RMSE i A 0.5 1.0000 | 23.09% | 23.96%
Wang and Yen [62] 40 0.0182 0.0263
Wang and Yen [62] 28 0.0182 0.0245 iii v 0 - 28.47% | 29.17%
Wang and Yen [61] 36 0.0053 0.0714
Wang and Yen [61] 23 0.0057 0.0436 v 0.5 1.0000
Wang and Yen [61] 36 0.0014 0.0539 P 10 10.2563
Wang and Yen [61] 24 0.0014 0.0253 P 10 9.9973
Yen and Wang [68] 25 0.0152 0.0202 v | p*¥ 10 9.4531 | 21.70% | 22.40%
Yen and Wang [68] 20 0.0261 0.0155 o 1 0.9349
Setnes and Roubos [49] 7 0.1265 0.0346 d 1 0.9572
Setnes and Roubos [49] 7 0.0548 0.0221 o 1 0.0591
Setnes and Roubos [49] 5 0.0762 0.0500 v 0.5 1.0000
Setnes and Roubos [49] 5 0.0274 0.0187 P 10 10.2070
Setnes and Roubos [49] 4 0.0346 0.0217 P 10 9.9890
Roubos and Setnes [43] 5 0.0700 0.0539 P 10 9.5711
Roubos and Setnes [43] 5 0.0374 0.0243 v o 1 0.9259 | 20.83% | 21.35%
Roubos and Setnes [43] 5 0.0288 0.0187 1 0.9463
our result 5 0.0328 0.0211 o 1 0.0211
W' 1 Fig. 11
we 1 Fig. 11

D. Modeling of a Static Nonlinear Function (HANG)

In this example, a double-input and single output static func- 4. Th . | | depicted i bl
tion is chosen to be a target system for the new fuzzy modeliﬂgg"’l"ne T 3 e-xperlmenta results are depicted in Table X,
strategy. This function is represented as 1able XII, and Fig. 8.

z=(1+z %+ y’1'5)2 . (99) E. Modeling of Box and Jenkins Gas Furnace

From the evenly distributed grid point of the input range € The Box and Jenkins Gas Furnace data consists of 296 mea-
[1,5] of the preceding equation, 50 training data pairs wegeirements of a gas furnace system: the input measurertient
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Experiment number

Name of flexibility
parameter

TABLE XIX
EXPERIMENTAL RESULTS

Initial values

Final values

after learning
(learning sequence)
(testing sequence)

RMSE

RMSE
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TABLE XVIII
COMPARISON TABLE
Method et
Acc.
Smith et al [56] 76.0
Ster and Dobnikar (Logdisc) [50] 77.7
Ster and Dobnikar (IncNet) [50] 77.6
Ster and Dobnikar (DIPOL92) [50] 77.6
Ster and Dobnikar (LDA) [50] 77.5
Ster and Dobnikar (SMART) [50] 76.8
Ster and Dobnikar (ASI) [50] 76.6
Ster and Dobnikar (FDA) [50] 76.5
Ster and Dobnikar (BP) [50] 76.4
Ster and Dobnikar (LVQ) [50] 75.8
Ster and Dobnikar (RBF) [50] 75.7
Ster and Dobnikar (LFC) [50] 75.8
Ster and Dobnikar (NB) [50] 753
Ster and Dobnikar (SNB) [50] 754
Ster and Dobnikar (DB-CART) [50] 74.4
Ster and Dobnikar (ASR) [50] 74.3
Ster and Dobnikar (CART: 11nodes) [50] 73.7
Ster and Dobnikar (C4.5) [50] 73.0
Ster and Dobnikar (CART) [50] 72.8
Ster and Dobnikar (Kohonen SOM) [50] 72.2
Ster and Dobnikar (kNN) [50] 71.9
our result 78.6
w'( I wagl’
N'\
1l
e
i=1,...8 I

F. Nonlinear Dynamic Plant

y(k) = g(y(k — 1), y(k — 2)) + u(k)

Fig. 11. Weights representation in the Pima Indians Diabetes prabfgme
[0,1], wi® € [0,1],7 = 1,...,8,k = 1,...,2 (dark areas correspond to
low values and vice versa).

We consider the second-order nonlinear plant studied by
Wang and Yen [61]

i v 0.5 0.0000 | 0.0169 | 0.0491
ii A 0.5 0.0000 | 0.0173 [ 0.0504
il v 1 - 0.0175 | 0.0536
v 0.5 0.0000
) 10 9.9079
P 10 9.9955
iv )2ad 10 10.0081 | 0.0167 | 0.0482
o 1 0.5980
o 1 0.9846
o 1 0.9445
v 0.5 0.0000
p° 10 9.9120
P 10 9.9968
jad 10 10.0259
v o 1 0.6782 | 0.0155 | 0.0427
1 0.9888
o 1 0.9401
w’ 1 Fig. 12
w 1 Fig. 12
TABLE XX
COMPARISON TABLE
Training | Testi
Method RMSE_ | RMSE
Ishibuchi et al (Heuristic. K=4) [17] 0.0800 0.0624
Ishibuchi et al (Heuristic. K=5) [17] 0.0414 0.0764
Ishibuchi et al (Learning. K=3) [17] 0.0339 0.0518
Ishibuchi et al (Learning. K=5) [17] 0.0205 0.1887
Ishibuchi et al (Hybrid. K=2) [17] 0.0434 0.0563
Ishibuchi et al (Hybrid. K=5) [17] 0.0154 0.0812
Ishibuchi et al (NN 520 1) [17] 0.0330 0.0547
Ishibuchi et al (NN 530 1) [17] 0.0333 0.0542
Nozaki et al (Heuristic. o=50. K=2) [39] 0.0752 0.0872
Nozaki et al (Heuristic. a=10. K=3) [39] 0.0542 0.0698
Nozaki et al (Heuristic. a=5. K=4) [39] 0.0429 0.0600
Nozaki et al (Heuristic. a=10. K=4) [39] 0.0423 0.0606
Nozaki et al (Heuristic (a=35. K=5) [39] 0.0372 0.0762
Nozaki et al (Learning. e=200. K=2) [39] 0.0420 0.0560
Nozaki et al (Learning. e=500. K=2) [39] 0.0400 0.0611
Nozaki et al (Learning. e=100. K=3) [39] 0.0339 0.0516
Nozaki et al (Learning. e=500. K=3) [39] 0.0283 0.0658
Nozaki et al (Learning. e=200. K=4) [39] 0.0248 0.1183
Nozaki et al (Learning. e=500. K=4) [39] 0.0179 0.1200
Nozaki et al (Learning. e=200. K=5) [39] 0.0163 0.1883
Nozaki et al (Learning. e=400. K=5) [39] 0.0126 0.1887
our result 0.0155 0.0427

y(k = Dy(k = 2)(y(k — 1) = 0.5)
T+y?(k = 1) +y*(k—2)

gly(k —1),y(k —2)) =
(101)

The goal is to approximate the nonlinear component

is the gas flow rate into the furnace and the output measurdy(k — 1),y(k — 2)) of the plant with a fuzzy model.

ment is the C@ concentration in outlet gas. The sampling inin [61], 400 simulated data were generated from the plant
terval is 9 s. The experimental results are depicted in Table Xlfhodel (101). Starting from the equilibrium state (0, 0), 200
Table X1V, and Fig. 9.

samples of identification data were obtained with a random
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W | W TABLE XXl
COMPARISON TABLE
Training Testing
I o
Dong and Kothari (IG) [9] 100.00 86.75
Dong and Kothari (IG+LA) [9] 100.00 100.00
I Dong and Kothari (GR) [9] 100.00 84.72
Dong and Kothari (GR+LA) [9] 100.00 100.00
2 our result 100.00 100.00
W
~ Monkl
w'! I wagr
i=1,..5 |
©~

Fig. 12. Weights representation in the Rice Taste problem < [0,1],
wi € [0,1],4 = 1,....5, k = 1,...,5 (dark areas correspond to low -
values and vice versa). Il

TABLE XXI
EXPERIMENTAL RESULTS

S
‘§ =2 ‘g = i=1,...,6 |

— 9
51 B 2 £
= 7 o o5 — e O
= E . E § = §' = % Fig. 13. Weights representation in the Monk 1 problem, € [0, 1], w;®" €
g & % 3 § 2 = sz [0,1],¢ =1,...,6,k = 1,...,7 (dark areas correspond to low values and
- c E = = = = S £ vice versa).

= = - = -

- = 2| 2 2

G. Pima Indians Diabetes

i Y 0.5 0.0000 | 8.87% | 13.89% The Pima Indians Diabetes data [56] contains two classes,
. eight attributes (number of times pregnant, plasma glucose con-
" A 0.5 0.0000 | 8.87% | 13.89% centration in an oral glucose tolerance test, diastolic blood pres-
sure (mm Hg), triceps skin fold thickness (mm), 2-h serum in-
" v ! i 11.29% | 19.68% sulin (mu U/ml), body mass index [weight in kg/(height in%)))
v 0.5 0.0000 diabetes pedigree function, age (years)]. We consider 768 in-
pl’ ig gggg‘; stances, 500 (65.1%) healthy and 268 (34.9%) diapetes cases.
v ;:g, 10 08545 | 64sw | 8330% All patients were femgles at least 21 years gld, qf Pima Ind|§n
o ) 0.9876 heritage. In our experiments, all sets are divided into a learning
o 1 0.9799 sequence (576 sets) and testing sequence (192 sets). The exper-
o= 1 1.0000 imental results are depicted in Table XVII, Table XVIII, and
v 0.5 0.0000 Fig. 11.
7ol w0 | oo
ppw 10 22058 H. Rice Taste
v o 1 0.9805 | 0.00% | 0.00% The Rice Taste data contains 105 instances and each instance
d 1 0.9852 is described by five attributes: flavor, appearance, taste, sticki-
o ! 1.0000 ness, toughness, and overall evaluation. In simulations the input-
w’ 1 Fig. 13 . . . . .
W 1 Fig. 13 output pairs of the rice taste data were normalized in the in-

terval [0, 1]. The experimental results are depicted in Table XIX,
Table XX, and Fig. 12.

input signak:(k) uniformly distributed in 1.5, 1.5], followed

by 200 samples of evaluation data obtained using a sinusoibial
input signak(k) = sin(27k/25). The experimental results are  The Three Monk’s Problems [56] are artificial, small prob-
depicted in Table XV, Table XVI, and Fig. 10. lems designed to test machine learning algorithms. Each of the

he Three Monk’s Problems



570 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 14, NO. 3, MAY 2003

TABLE XXIII Monk2
EXPERIMENTAL RESULTS
W | e
5 - i
2 'S o &n 2 8
=| B : 2 .8 ®E | w2
8 = 5 = 3 E - :n - T
E1 B8 - £3 e = g o
Sl eof 5 = | 48 S E
| EE = e z § 2%
Wi Za = G S 2 s2 ™~
i v 05 | 00000 | 22.49% | 27.08% n
e
ii A 0.5 0.0000 | 22.49% | 27.08%
iii v 1 - 30.18% | 35.65%
v 0.5 0.0000
P’ 10 9.9812 ,
P 10 10.0124 i=L...6 |
iv P 10 8.8633 | 17.16% | 31.25% v
o 1 0.0000 o
1 0.9887 Fig. 14. Weights representation in the Monk 2 problemm, € [0, 1], w;®" €
o 1 0.9925 [0,1],¢ =1,...,6,k = 1,...,7 (dark areas correspond to low values and
- vice versa).
v 0.5 0.0000
P 10 9.9629
P 10 10.514 TABLE XXV
P 10 8.9431 EXPERIMENTAL RESULTS
v o 1 0.0016 | 4.14% | 11.81%
a 1 0.9958 5 -
o 1 0.9755 £ 2 'g ?
w’ 1 Fig. 14 3 ;g . . . % . §
we' 1 Fig. 14 E £ . E § -g s 2 R g
] =2 g S 3 g2 e
= @ > 9 2 &0
£l =8 | = | -+ | ¢ : el
TABLE XXIV gl £ = i | 2 23
COMPARISON TABLE M) 28 = - = -
Mathos Training | Testing i v 0.5 0.0000 | 6.55% | 3.00%
Acc. Acc.
Dong and Kothari (IG) [9] 80.47 63.42 . o o
Dong and Kothari (IGFLA) [9] 82.25 63.65 " A 05 | 00000 1 6.55% | 3.70%
Dong and Kothari (GR) [9] 81.06 64.81
Dong and Kothari (GR+LA) [9] 81.66 66.51 iii v 1 - 491% | 6.94%
our result 95.86 88.19
v 0.5 0.0000
P 10 9.9400
. . . . !
three monks problem requires determining whether an object p 10 1.0000
. . . o iv| p¥ 10 9.9216 | 6.55% | 2.77%
desc_rlbe_d by six features _(he_ad shape, body shape, is smiling, o 1 1.0000
holding, jacket color, has tie) is a monk or not. 1 0.9815
There are 432 combinations of the six symbolic attributes. o 1 0.7589
In the first problem Konkl1), 124 cases were randomly se- 4 0.5 0.0000
lected for the training set, in the second problévio(k2) 169 P’ }g ?'glgg
cases, and in the third problemi¢nk3) 122 cases, of which ;:g, 10 9‘9(5)12
5% were misclassifications introqlucing some noise in the data. v o 1 10000 | 0.00% | 0.00%
The experimental results are depicted in Table XXI, Table XXII, 1 0.9342
and Fig. 13 lonk1), Table XXIIl, Table XXIV, and Fig. 14 o 1 0.7612
(Monk2), Table XXV, Table XXVI, and Fig. 15Nlonk3). v i ?g ii
w ig.

J. Wine Recognition

The Wine data [56] contains the chemical analysis of 1§8oanthocyanins, color intensity, hue, OD280/0D315 of diluted
wines grown in the same region of Italy but derived from thregines and proline. In our experiments all sets are divided into a
different vineyards. The 13 continuous attributes available fegarning sequence (125 sets) and testing sequence (53 sets). The
classification are: alcohol, malic acid, ash, alcalinity of aslexperimental results are depicted in Table XXVII, Table XXIII,
magnesium, total phenols, flavanoids, nonflavanoid phenoés)d Fig. 16.
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TABLE XXVI

TABLE XXVII
COMPARISON TABLE

EXPERIMENTAL RESULTS

. 2l = n
Dong and Kothari (IG) [9] 80.47 63.42 2| 2 . L 5 o
Dong and Kothari (IG+LA) [9] 82.25 63.65 - é . s 2 £ g | RE
Dong and Kothari (GR) [9] 81.06 64.81 gl 2 s =2 § g @ @
Dong and Kothari (GR+LA) [9] 81.66 66.51 5 é £ s == c E i %”
our result 95.86 88.19 = = = e 2 = 2%
dl z2 = E¥ | Ec | B &
1 0, 0,
Monk3 i v 0.5 1.0000 | 4.00% | 7.54%
w' | - i 2 0.5 1.0000 | 4.00% | 7.54%
iii v 0 - 720% | 9.43%
0.5 1.0000
P 10 10.5256
P 10 9.9573
iv P 10 9.8363 | 0.80% | 3.77%
= a 1 0.3257
| o 1 0.9455
mn o 1 9.9958
-~ v 0.5 1.0000
P’ 10 10.2556
P 10 9.9999
o 10 9.9881
v o 1 0.3067 | 0.00% | 0.00%
1 0.9592
load 1 1.0000
- w’ 1 Fig. 16
l=1,...,6 i W 1 Fig.16
Fig. 15. Weights representation in the Monk 3 problem, € [0, 1], w;®" € TABLE XXVIII
[0,1],i =1,...,6,k = 1,...,7 (dark areas correspond to low values and COMPARISON TABLE
vice versa).
_ _ Method Tfé"c“g
K. Wisconsin Breast Cancer Data Torcoran and Sen 6] 00,0
The Wisconsin Breast Cancer data [56] contains 699 in- Ishibuchi et al [17] 99.4
stances (of which 16 instances have a single missing attribute) Gonzalez and Pérez (SLAVE(2]) [15] 89.8
. . . . . Gonzalez and Pérez (SLAVE[2] with OR
and each instance is described by nine attributes (clump and AND) [15] 90.4
thickness, uniformity of cell size, uniformity of cell shape, Gonzalez and Pérez (SLAVE[2] with OR, 90.4
marginal adhesion, single epithelial cell size, bare nuclei, AND and Generalization) [15] i
bland chromatin, normal nucleoli, mitoses). We removed those Gonzilez and Pérez 9338
. .. . (SLAVE[2] with all operators) [15]
16 instances and used the remaining 683 instances. In our our resalt T00.0

experiments, all sets are divided into a learning sequence (478
sets) and testing sequence (205 sets). The experimental result
are depicted in Table XXIX, Table XXX, and Fig. 17.

Theor-type system is less complicated thansh®-type

system from a computational point of view. Both systems
produce the same type of inference (Mamdani or logical)
in the process of learning.
In this paper, we have presented new neuro-fuzzy structures5) The most influential parameters are certainty weights
They are characterized as follows wl, € 0,1, = 1,...,n, k = 1,...N and
1) TheAnD-type system is a combination, controlled by pa- wp® € [0,1], & = 1,...N. They significantly im-
rameten\ € [0, 1], of Mamdani-type and logical-type sys- prove the performance of the system in the process of
tems. In the process of learning only one type of system learning.
is establishedX = 0 or A = 1). 6) The influence of soft parametess € [0,1], o € [0, 1],
2) Theor-type systemis “more Mamdanid(< v < 0.5) or ™" € [0,1] on the performance of the system varies
“more logical” (0.5 < v < 1). In the process of learning depending on the problem.
onegetyy =0orv = 1. The main advantage of our approach is the possibility of
3) Theor-type is equivalent to thenD-type system iy = learning a system type. The results of simulations are given in
A = 0 (Mamdani-type) oir = A = 1 (logical-type). Table XXXI.

VIIl. FINAL REMARKS
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W' | wee TABLE XXX
COMPARISON TABLE

Method e
Acc.
Dong and Kothari (IG) [9] 94.3
Dong and Kothari (IG+LA) [9] 94.1
l_ Dong and Kothari (GR) [9] 94.7
Dong and Kothari (GR+LA) [9] 94.8
“ Ster and Dobnikar (Fisher LDA) [50] 96.8
: Ster and Dobnikar (MLP+BP) [50] 96.7
in Ster and Dobnikar (LVQ) [50] 96.6
~ Ster and Dobnikar (Bayes) [50] 96.6
Ster and Dobnikar (Naive Bayes) [50] 96.4
Ster and Dobnikar (LDA) [50] 96.0

Ster and Dobnikar (LFC, ASI, ASR) [50] | 94.4-95.6
Ster and Dobnikar (Quadratic DA) [50] 34.5
our result 96.6

i=1,...13 | W -

Fig. 16. Weights representation in the Wine Recognition problem <
[0,1], wi® € [0.1],¢ = 1,....13,k = 1,...,3 (dark areas correspond
to low values and vice versa).

TABLE XXIX
EXPERIMENTAL RESULTS

Experiment number
Name of flexibility
parameter
(learning sequence)
(testing sequence)

after learning

Mistakes [%]

Mistakes [%]

Initial values
Final values

i v 0.5 1.0000 2.30% 3.90%
i yl 0.5 1.0000 | 2.30% | 3.90%
: Fig. 17. Weights representation in the Wisconsin Breast Cancer problem
. . wl, € [0,1], wp* € [0,1],¢ = 1,...,9, k = 1,...,2 (dark areas
iii v 0 - 2.12% | 6.34% correspond to low values and vice versa).
v 0.5 1.0000
P 101 9.9136 TABLE XXX
p 10 9.9969 RESULTS OFSIMULATIONS
iv jad 10 10.0631 2.09% 3.90%
a 1 0.9527 :
d 1 0.9469 Name of simulation Type of lgffrence
o 1 0.9802 moce
v 0.5 1.0000 A | Glass Identification logical y= 1 =1
P; 10 8.9705 B | Ionosphere logical y = 2 =1
P, 10 9.9999 C [ s logical y = 4 =1
P . 10 9.9999 . o D | Static Nonlinear Function (HANG) Mamdani y = 4 =0
v ‘; i gzz;g 1.67% 3.41% E | Box and Jenkins Gas Furnace Mamdani y = 4 =0
e i 0.9798 F | Nonlinear Dynamic Plant Mamdani y = 1 =0
. 1 F: 17 G | Prima Indians Diabetes logical y =1 =1
v:‘;g' 1 F]ig' 17 H | Rice Taste Mamdani y =1 =0
£ 1 | The Three Monk Problem Mamdani y= 4 =0
J | Wine Recognition logical y = 1 =1
. . K | Wisconsin Breast Cancer Data logical y = 1 =1
We conclude that Mamdani-type systems are more suitable to gy

approximation problems, whereas logical-type systems may be
preferred for classification problems. It should be emphasized
that the results in simulations A, B, C, D, G, H, |, and J outper- y . _ _

f the best results known in the literature. althouah it was not[1] R. Babska and M. Setnes, “Data-driven construction of transparent
orm e u wn i I ure, ugh itw fuzzy models,” inFuzzy Algorithms for ContrpH. B. Verbruggen, H.-J.
the main goal of our paper. Zimmermann, and R. BaBka, Eds. Boston, MA: Kluwer, 1999.
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