In this paper, the viability of using Fuzzy-Rule-Based Regression Modeling (FRM) algorithm for tool
performance and degradation detection is investigated. The FRM is developed based on a mmlti-layered
fuzzy-rule-based hybrid system with Multiple Regression Models (MBM) embedded into a fuzzy logic
inference engine that employs Self Organizing Maps (SOM) for clustering. The FRM converts a complex
nonlinear problem to a simplified linear format in order to further increase the accuracy in prediction
and rate of convergence. The efficacy of the proposed FRM is tested through a case study — namely to
predict the remaining useful life of a ball nose milling cutter during a dry machining process of hardened
tool steel with a hardness of 52-54 HRe. A comparative study is further made between four predictive
models using the same set of experimental data. It is shown that the FRM is superior as compared with
conventional MEM, Back Propagation Neural NMetworks (BPNN) and Radial Basis Function Networks
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1. Introduction

The apphcations of Predictive Intelligence (PI) for
real-time fonline machine fault detection and prog-
nostic is a relatively new development particularky
for the monitoring of critical machinery and equip-
ment. Research efforts in this area have increased
tremendously over the last few vears due to the
need to ensure high awailability of critical equip-
ment, improved reliability and performance, partic-
ularly for unmanned factory operation. Over the
past decade, Pl applications have evolved from
simple laboratory demonstrations to sophisticated
commercial products. Many novel Artificial Intel-
lipence (Al) or machine learning algorithms have
been developed and applied to many application
areas in recent vyears, for example, neural net-
work models for earthquake mapnitude prediction
using multiple seismicity indicators,! online detec-
tion of the modality of complex walued real world
signalk.? New theories on machine learning have
shed some light relating to some fundamental issues,
such as self-organizing mixture autoregressive model
for non-stationary time series prediction”; mprov-
mg supervised learning by adapting the problem
to the learner!; neuwral dynamic model® %1174,
dynamic wavelet neural networks for modeling com-
plex time-dependent phenomena such as vibration
control of structures wnder earthquake loading!® '¥;
wavelet-chaos-neural  network methodology  for
FEG analysis'; probahilistic neural networks™" 2,
complex-valued neural networks™ #; spiking neural
networks* 49 No-reference video quality measure-
ment with support vector regression.®*® The used of
PI for reaktime machine fault detection, tool perfor-
mance prediction, degradation detection and optimal
control is a prime topic for numerous mvestigations.
Vachtsevanos et al™ and Lee™ demonstrated the
viahility of wsing a dynamic wavelet neural networks
proguostic framework and virtual sensors for the
prediction and detection of bearing failure. Prope
et al¥ developed a realtime architecture for prog-
nostic enhancements systems and applied it to the
detection of incipient failure conditions and predic-
tion of the remaining useful life of the US navy's
existing stockade of artillery shells.

In the high precision machining industry, major
research efforts are focused on the development
of self-adjusting and inteprated systems capable

of monitoring performance degradation and work
piece integrity under various operational condi-
tions with minimal operator’s supervision. Most
of the key research work in this research field
15 focus on the development of techniques and
approaches for analytical forecast, dynamic struc-
ture identification, monitoring and adaptive con-
trol. The wviability of these techmques are tested
in applications such as tool breakage detection
in milling operations,® tool wear monitoring in
reconfipurable machining systems*® and selection
of relevant features for tool wear in face milling
processes.’® In the machining process, many vari-
ables and parameters affect the work plece mtegrity
and tool performance over the production regime.
As such, it B common for researchers to install
a suit of accelerometer, dynamometer, acoustics
emission amnd other sensors at critical locations to
allow esitu signals to be captured, processed, ana-
lyzed and transformed ioto useful reference mod-
els for condition and performance monitoring, 46
Examples of these models include dynamic mod-
els for diffusion and adhesive wear models?’; lin-
ear steady-state models for tool wear and cutting
forces™™; auto-regressive chatter and tool breakage
models. ** Other advanced methods include hidden
Markov models,” Bayesian networks,” neural net-
works and fuzzy peural networks®® ™ for tool condi-
tion momtoring.

In the development of tool performance monitor-
ing systems, convergence speed and adaptive learn-
ing capability are two important issues®® to allow
for preater effectiveness and robustness. The princi-
pal constituents to concurrently address these ssues
include the use of fuzzy logic reasoning for imprecise
data,” ™ neural networks for learning and proba-
hility reasoning for uncertainty mapping."' " More
investigations have been done for defects quickest
detection,™ statistical quality control®™ and non-
parametric detection." % However, in order to take
advantage of these technologies for predictive perfor-
mance and integrity monitoring applications collec-
tively, a systematic, efficient and robust approach is
critically required.

Linear repression technique has been demon-
strated for the prediction of tool-wear with respect
to a specific training dataset, but its accuracy will
be compromised if the data ® nonlinear. Neural
networks or fuzzy neural networks are extremely



good candidates for solving non-lmear problems,
but require large training sample, longer training
time and suffer from local minima issues.™ ™ To
circumvent these weaknesses, a new hybrid mtel-
ligent method, termed Fuzzy-rule-based Repression
Modeling {FRM) algorithm, i1s proposed. The FEM
15 developed based on a multi-layered fuzzy-rule-
based hybrid system with Multiple Regression Mod-
els (MEM) embedded mto fhwzy logic inference
employing Self Organizing Maps (SOM).™ The FRM
converts a complex non-hnear problem to a sanph-
fied linear format and adopts a divide and conquer
methodology by decomposing 1t imto smaller, less
complex and more manapgeable sub-problems that
allows higher prediction accuracy and faster learn-
ing rate. The viability of the FRM technique is tested
for the prediction of tool life in a dry milling oper-
ation. A comparative study was made in relation
to Multi-regression models, Backpropagation Neural
Networks (BPNN)™-7® and Radial Basis Functional
Networks (RBFN)™ 5 using the same set of exper-
nnental data.

2. The FRM Architecture

The architecture of the FRM is shown in Fig. 1.
Basically, it 5 a five-layer huzzy-rule- based regres-
sion modeling hybrid system. In accordance with
the common network notation, a node in any layer
n of the network termed net” performs a specific

operation.®
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Fig. 1.

Layer 1: The nodes in this layer transmit input values
iy to the next layer directly as wuy,, where u, = ug,.
1.6.,

(1

i'.l-ﬁ'f}r = Uy

where k =1,2, ... ,pand g =1,2,... n.

Layer 2: The nodes in layer 2 are the input member-
ship functions. They work as a fuzzifier transforming
a numerical input into a fuzzy set.*" The member-
ship functions are normal distributions in the range
of [} and 1{inclusive 1), governed by

Mg —™ kg 42
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where 2 = 1,2,..., h. The terms m;, and o, are the
mean and variance of the input membership function

respectively.

Layer 3: The nodes in this layer perform a fuzzy min-
max operation on the node inputs, i.e. a fuzzy AND

operation followed by a fuzzy OR operation.®”

3 .
net; = min{iug } = 1y

Y T ]

where 1 =1, 2, ..
: : 3
Node = max(net], net;, ... net,

(3)

where ¢ £ {1,2,..
layer 3 with the maximum net? value. Node ¢ is called

. h} is the node mumber in the

the winner rule node of the fuzzy min-max operation.

Layer 4: Each node in this laver performs correlation
modelmg. It buillds up a Multiple Regression Model

Fuzzy

Regression
madels

Dutput
vari able

The architecture of FRM.



{(MEM) between input variables and output target
with the data set belonging to node ¢ cluster at the
drd layer as shown in Eq. (4). The nodes in this layer
only link with the nodes at the third layer where rules
have been trained. According to the assumption of
statistics, a MRM is not carried out in a rule node if
the data sets are less than 10 samples so that there 13
no linkape between the fuzzy-rule layer and regres-
sion model layer till the number of data sample is
more than ten. The node 1D at this layer is the same
as rule mapping with the rule layer, Le. we have

P
Uy = Ui =y + Zﬂ.km;_. (4)
=1
where 7= 1,2,... h, k= 1,2,...,p (node number of
the 1st layer), u.; 1 the output vale of the winner
node ¢ at the 3rd layer.

Layer 5: The output at layer 5 is the predicted result
from MRM and it given by

A
Y, = ¥(t) = u, (5)
where Y, is the predicted output target.

3. Working Procedures of FRM

The process starts with self-organized learning to
establish the membership functions for each of the
mput and output variables. This is followed by den-
tification of the fuzzy rules that are associated with
the respective input-output data sets used. Once
these have been done, the winner mle node clus-
ters the input-output data sets with similarity of
fuzzy membership patterns and builds their regres-
sion model. Each fuzzy rle has its own regression
model. The FEM network then used these regres-
sion models for prediction and the results obtained
are used for retraining of fuzzy rules. The setting-up
process thus involves five stages:

1
2] Identification of fuzzy rules.

(1) Self-organized learning.
(2)
(3) Fuzzy SOM clustering
(4]
(5)

4) MEM correlation modeling with clusters.
5) Prediction and fuzzy rule retraining.

3.1. Self-organized learning

The Kohonen's Feature Maps algorithm™ is used

here to find the number of membership functions and
their respective means and variances of each node at

layer 2. The salient features of the algorithm are as
follows:

For a given set of data X = (xy,729,...,7,), ini-
tial mean values my,ma, ..., my are assipned arhbi-
trarily where

min(ry, ra, ..., Ty < My < max(ry, To, ..., Tyl

The data are then grouped around the initial means
as follows:

lz; —m,| = mﬂ_in{|1:j —my|}l<i<k and
1=j=n (6]

where m,. is the mean with which the datum z; asso-
ciates. Data proupings and the mean values are opti-
mized by the following iterative process:

Let z;(f) be an input and m.(t) be the value of
m,. at iteration #(f = 0,1,2, ...), then

=1
et

melt + 1) = m(t) + alt) [z;(#) — m(t)] {
if z; belongs to the grouping of m,., and
mdt+1) = m.(t) (8)

if z; does not belong to the grouping of m...

Note that a{t) [0 < alt) < 1] is a monotonically
decreasing scalar learning rate. The iteration stops
at a certain number of cycles decided by the user or
when the condition |m (¢ + 1) — m(t)| < § 1s satis-
fied, where 4 15 an error limit assigned by the user.
The vanances of membership functions can be deter-

mined by Eq. (9) as follows:

11— _
o= = Ejg{mj—m,-jﬂ (1<i<k) (9

where a; & the variance of membership function 1, my
the mean of membership function ¢, z; the observed
data sample, k the total mumber of membership fune-
tion nodes, p; the total number of data samples in
ith membership function group amd R an overlap
parameter.

For a set of given mput variables, the number
of initial mean values (my, ma, ... ,my) is assipned
by trials and errors. This mvolves striking a bal-
ance between learning time and accuracy. Too small
a number results in an oversimplified structure and
might therefore adversely affect accuracy. On the
other hand, too large a number increases network



complexity unnecessarily, resulting in a consider-
able increase in learning time with very little or no
Inprovenent n aceuracy.

3.2. Identification of fuzzy rules

After the membership functions have been con-
structed, the next stape is to identify the
fuzzy rules using the same set of data samples.
The identification process starts with a fully-
connected neural network structure. The total mum-
ber of mitial rules is bounded above by T{z;),
Tiza),....T(zy),....T{zp) where T zy) is the num-
ber of membership functions of the kth mput
variable 5%

A set of input data are fed to the network
from layer 1. They are fuzzified in layer 2. A fuzzy
AND operation is performed on the fuzzified data in
laver 3, followed by a fuzzy OR operation. Node ¢
is identified as a winner rule node of the fuzzy min-
max operation in layer 3 and the relevant nodes in
laver 2. The rule identification and clustering process
are illustrated in Fig. 2.

Once rule node ¢ identified, a rule, or say clus-
ter generated with the links in this layer represents
the input of the winner node. In other words, win-
ner node ¢ clusters all the data sets which have the
similarity of fuzzy membership patterns according to
fuzzy inference and SOM learning.

3.3. Multiple regression modeling with
clusters

Although the overall relationship between an out-
put and its related inputs could be very complex,
the relationship can be linear or close to linear
within the specific small ranpe of variation of the
inputs after fuzzy clustering”! which collects all sim-
ilar data patterns within a rule. Therefore, the cor-
relation among the inputs and output within the
specific range corresponding to each rule & built
up using MEM & applied with the relevant data
sets, as shown in Fig. 3. Commonly accepted f-test,
F-test, D-W test and coefficient determination r?
are carried out to verify the MRM's statistical
significance. ™

The nodes at layer 3 convert a complex non-linear
problem to a simplified linear format with multiple
regression models. When the mumber of data sets s
less than 10, repression modeling is skipped till the
mumber & more than 10 data sets according to MEM
assumption of statistics.

3.4. Prediction and rule retraining

Once the membership functions have been con-
structed, the fuzzy rules generated with their clusters
and the regression model built each cluster, and the
FRM petwork is ready for prediction. For a given
input data set, if the fuzey rule identified during
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Fig. 2. Fuzzy rule identification and clustering process.
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prediction does not match any of the existing rules in
the rule base, the system will choose® as replacement
from the rule base a rule that is closest” to the rule
identified and will proceed to prediction as usual.
This will unavoidably introduce errors into the pre-
diction result. It is therefore important that a suffi-
ciently large pool of data samples be used to ensure
that the training is complete.

The FRM network can be retrained whenever
new data become available. Retraining involves
repeating stapes 3.1 to 3.4 to reconstruct member-
ship functions, identify new fuzzy rules and new clus-
ters, if any, and update regression models. In general,
the more the FRM petwork is retrained, the more
accurate it will be.

Three commonly used measures, namely Mean
Squared Error (MSE), Mean Absolite Percentage
Frror (MAPE) and R-squared Values (B*)™ were

wsed to evaluate the prediction accuracy in this work.

4. Case Study

The efficacy of the proposed FRM is tested through
a case study — mnamely to prediction of the
remaining useful life of a ball nose millmg cutter
during a dry machining process of hardened stain-
less steel (HRCH2). Tool condition monitoring and

Fuzzy
rules

Dutput
variable

Regression
models

Fuzzy rule-based regression modeling process.

failure prediction are important factor in automated
machining processes. Undetected or pre-mature tool
failures often leads to costly scrap or rework aris-
ing for damaged surface finishing and loss of dimen-
sional accuracy or possible damage to the work piece
and machine.* The types of workpiece material; cut-
ting speed, feed rate, depth of cuts used; cutting
tool materials and nano-composite coatings used;
together with the ape and rigidity of the machine
tool and fixture will collectively affect the remain-
ing useful life of the tool in question. Similar to our
previous works,™ the aim of this study is to pre-
dict the performance of a 6mm ball nose milling
cutter during the machining of hardened tool steel
material, which is often used in the mould-making
industry where surface integrity is of a paramount
INPOT LATLCE.

4.1. Exzperiment set-up and features

extraction

Presently, most of the CNC machine centers are not
equipped with highly reliable tool condition mon-
itoring system since the relationships between the
work piece material, cutting parameter, tool charac-
teristics and geometry has yet to be clearly estab-
lished. In owr experimental setup, we chose to use

“In the event of a tie, i.e. two or more possible replacements exist, one is selected at random.
bThe closeness between two rules i measured in terms of the number of common membership function nodes that the

riles involve.
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Fig. 4. Tool condition prognostic monitoring in a
milling machine.

the cutting force as our input signal for establishing
the FRM models for tool life prediction since it i
highly sensitive and can be measured with fairly good
accuracy”” in order to provide relatively clear indica-
tion of tool wear and degradation. The experimental
set up for the monitoring of cutting tool condition is
shown in Fig. 4.

A high speed CNC milling machine ( Roders Tech
RFMT7T60) with spindle speed up to 42,000 rpm was
selected for the experiment. The tool used in the
experiment is 6 mm 2-flutes ball nose tungsten car-
bide cutter while the material is hardened stainless
steel (HRC52) machined wnder a dry cutting con-
dition. The surface was machined to have a slope
with 60° to accommodate the 2-flute ball nose cut-
ter. The spindle speed chosen was 23,600 RPM, feed
rate 4, T10mm /min, depth of et 0.2mm. The cut-
ting force along the z-, y- and z-directions of the
machining tool was measwred by a Kistler quartz
J-component platform dynamometer m the form of
charpes, and converted to voltages by the Kistler
charge amplifier. The voltage sipnal was captured by
a PCI 1200 board with assembling rate at 1500 Hz
per channel and directly streamed to the hard disk
of a computer. The flank wear of each individual
tooth of the cutting tool are measured with a Leica
I TOSCOPE.

Sixteen main force features was captured amd
summarized in Table 1. Among the sixteen features,
four of them, {fm, fa, Fa, Ht{l}, have been identified

to have the most significant influence to tool wear %9

Table 1. Extracted force features.

No  Feature Naotation Objective

1 Residual error re TED

2 First order differencing foacd TWD

3 Second order differencing  sod TWD

4 Maximum force level fin TWD

B Total amplitude of fa TWD
cutting force

G Combined incremental df TWD
force changes

7 Amplitude ratio ra TWD

L Standard deviation of fstdd TBD

the force components in
tool breakage zone

9 Sum of the squares of sre TBD
residual errors
1y Peak rate of cutting kpr TBD
forces
11  Total harmonic power thp TWD
12 Average force Fa TBD
TWD
TWE
13  Variable force vi TBD
14  Standard deviation stad TWD
15 Skew skew TWD
16 Kurtosis kts TWD

Note: TBD: Tool Breakage Detection: TWD: Tool Wear
Detection; TWE: Tool Wear Estimation.

The feature data and measured tool wear are then
stored into the database.

4.2. SOM learning and rule generation

A total of 52 800 sets of data were captured - half of
the data are used principally for rule training and
the remaining are used for testing. As mentioned
in Sec. 4.1, four input variables which are thought
to have an influence over the tool wear (YY) are
selected. They are maximum foree level (X @ f..),
total amplitude of cutting Force (Xo @ ), aver-
age force (Xg : F,) and standard deviation of force
(X4 : std). The selection method used is based on
an optimum feature subset selection with a modified
wrapper-based multi-criteria approach wsing Genetic
Algorithms "

The FREM starts its self learning of fuzzy mem-
bership parameters (mean and variance) with SOM.
The data samples were first normalized to the ranpe
of {0, 1}. The mumber of membership function nodes
is a set of each input variable established through the



trials and errors mining of the distribution patterns
from the data samples. There are 10 nodes {very
low, low, ... medium, ... high, very high) for =,
12 nodes for o2, 8 nodes for &5 and 12 nodes for x4
Thus, the maximun munber of possible fuzzy rules
i 11520 which is derived from 10 = 12 = 8 = 12,
However, the rule base stores only 83 rules which
have been trained and are represented as clusters, as
shown in Thble 2. Figure 5 shows the membership
distributions of X; before and after learning. With
the adjusted means and variances, the data sets are
then clustered according to their similarity. The z-
axis represents the normalization of the selected fea-

ture being normalized to {0,1}.

4.3. Fuzzy-rule-based muliiple
regre ssion modelling

Since the data sets within one fuzzy rule or one clus-
ter have similarity characters, their relationships are
most likely to be hnear. MRM is applied with the
data sets to build the correlation among the inputs
and output within each rule.

The relationships between the input wvariables,
fuzzy memberships, fuzey rules, multi-regression
models and output are shown in Fig. 6. Given one
data set of x1, x2, x3 at the first layer, it is found that
xl belmgs to “High”, x2 15 “High” and x3 & “Low”
after the FREM 15 fuzsified and clustered using the
SOM. The data set is further reorganized into fuzey
rule, #2 which linked with the data cluster “High,
High, Low”. A regression model named MERM2 will
be linked directly with rule #2 if the frequency of
occurrence within rule #2 exceeds more than ten
sets. In our case study, a total of 28400 data sets
are trained. A total of 65 data sets have been asso-
cliated with fuzzy rule #11 as shown in Table 2. A
regression model is built up with the 65 data sets as
shown i Eq. (10).

Y, eute 2) = —0.218 — 0.11f, oy + 0.105 f 0y,
+HO15T 1) + 0118 fuge—gy (100
The T-test values for the coefficients are respectively
(—237.73) (—1.98) (1.868) (60.19) (20.52)

The F-test walue for the overall significance is
218,954,

R? = 09759

Table 2. The learned fuzzy rules and associated data
sets.

Rules## No.of Nooof
training testing

Ruledt No.of No. of
training testing

data data data data
1 24152 24152 22750 13 13
11 Oh LiT) Adal A 24
12 15 14 Jddd T Th
13 12 11 Adad 7l '
21 4 Ay Jddd 145 145
2 17 1t Sadd 2 24
a1 11 Tt Aaddh 20 20
141 21 24 dd5d a1 il
1111 0l il dadnd Tl )
1121 Hhb b J355 13 15
1124 o o dadnd il i3
1141 T2 LEH] 33050 250 27
1132 il ] S 16 14
1134 G0 30 haliT) 14 21
1135 1 17 A3T0 i i 2
1141 12 17 h5 TN 14 T
1142 25 256 4465 B2 5
1144 155 157 4400 2 2
1153 a0 i Bhdd 24 2
1221 14 1% oo 43 A
12242 41 A7 Bhoh 2 2
1243 g4 LT Devialy 4%
1244 1 1t L] 2 2
1253 1) A DoiD 14 1t
125 17 16 Do Th Hd bl
i ol ol A Fu i 44
LR 17 16 DhTs 12 10
2231 11 H Eulaiabn o a1
2232 108 108 GhOT 12 11
rris 21 1t bl T 25 25
il ] 11 11 GhTT A A
L F W 25 x> B ET Bl Bt
22443 11% 122 § et 15 21
raq Th Hi LTl 1% 1t
F2Ah 14 21 T s 12 11
LA 1ot 17 s a7 a7
225 127 123 E=ll 12 14
L 34 A4 HE1d 12 12
Ll in 21 2 HExdl 13 11
2204 G0 32 BEd 14 15
i 21 24 HE 12 11
011 il (L]

This model is always accessible once a data set is
associated with rule # 2. The output ¥, from the
FRM is compared with its real output tool wear
Y,. If the R is not accepted, the FREM will restart
from the fuzzy membership definition step, as shown
in Fig. 7. Otherwise, fuzzy-rule-based repression



B uFFy Membarship istribution - Level | a |

1.0 LEGEMD:; asss =|nifial, - =SefLeamed
- ] g Y ¥ " [
e BRI R Y Y Ak '
08 ] = Shicfe af 3 : =
L, = = |- 1) : &
= of i s o [ohef Fa]=+ - .
[ . v "% Fehes . ¥ X
E 0E i 2 LI = - L i
£ IR B ; ,
5 E : ' l.: I: ® l :-
B4 . a a F)
2 - -
= o - .
& o [ 5 . : AN
S0z I sy s " + 1 5
: . o f . < Bl z v
-l '. " " ; -1
|:| |:| L] L & £l * L] 1
0.0 0.2 0.4 0.6 0.8 1.0
1 Mamimum force laval
Mermbership function of X1| FirstX | MextX | YVaie |
' Reset Membership Function | Start Rule Generation |  Cancel
Fig. 5. Before-after self-learned fuzzy membership distributions.

¥

Input Fuzzy

Memberships

Fig. 6.

modelling process will be terminated. The overall
process of determining FEM fuzzy membership, data
clustering, rule generation and input and output cor-
relation modeling are shown in Fig. 7.

4.4. Prediction of tool life span and
re-training

Once the chistering and modeling are completed, the
FRM network is ready for prediction. For a given

Fuzzy
Rules

v

A

Regression
Models

Y
Output

Example illustration of fuzzy rule-based regression modeling,

input data set, if the fuzzy rule identified during pre-
diction does not match any of the existing rules in
the rule base, the system will choose as replacement
from the rule base a mle that is closest to the rule
identified, and will proceed with the prediction pro-
cess as shown in Fig. 8. This process will inevitability
introduces errors and will affect the accuracy of pre-
diction. It is therefore important that a sufficiently
large pool of data samples must be used to ensure
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vigorousness with the training process and to ensure
higher accuracy.

The FREM network can be retrained whenever
a new data become available. Retraining involves
repeating stages 3.1 to 3.4 (see Sec. 3) to reconstruct
membership functions, identify new fuzzy rules, if
any, and update regression models. In peneral, the
more the FRM network is retrained, the higher will
be its accouracy. The prediction of tool wear based on
an untrained dataset using previous tramed mforma-
tion is shown in Fig. 8.

After the FRM network is trained, test data are
fed to the trained FRM to obtain the forecasted val-
ues Ft. Error measures for the 28,240 sets of test data
are found to be: MSE = 1.743 = 107", MAPE = 0.01
and K2 = (.0984.

Through the FREM clustering, modeling and pre-
diction test, it was noted that the amount of train-
g time required to carry out the experimment is
dependent on the nmumber of fuzzy membership nodes
assipned to each of the features. Therefore, 1t could
be concluded that the higher the level of accuracy
required, a larger number of membership items are
required which in turn will degrade the conver-
gence speed. However, it must be also noted that
high accuracy 1s not assured even when more fuzzy

Define pammeters and dataset

l

Load trained fuzzy membership distribution

Identifying aclosest Data clustering and searching fuzzy rule

existing furzy rule

Mo

Match anexisting fuzzy rule?

Output prediction using MEM withthe rule

Fig. 8. Flowchart of prediction process.



Table 3. Prediction performance of FRM.

Error measures FRM

MSE 1.743 » 1073
MAPE 0.010
R 0.0054

membership items are defined. As such, the determi-
nation of the optimum the mumber of fuzzy member-
ship items remain an unresolved problem.

4.5. Comparison with conventional

neuwral networks

The same dataset was used for tool performance
prediction with BPNN and RBFN and conventional
MRM.

Table 4 summarizes the parametric set-ups and
training performance of both neural network models,
BPNN and RBEN. The training results show that
the RBFN performs than BPNN since lesser itera-
tions are required.

The BPNN model used comprises of 4 layvers: 1
input layver, 2 hidden layers and 1 output layer while
the RBFN model has 3 layers: 1 input, 1 prototype

Table 4. Parametric set-ups and training performance
of FRM, BPNN and REBFN.

Parameters FRM BPNN RBFN
Learning rates 0.5 0.5 0.5
Momentum”®™  — 0.4 0.4
Learning rules  S0OM Delta Norm-cum-
delta
Transfer Ciaussian Sigmoid  Gaussian
function
Number of B 4 3
layers
Number of 4,042, 83, 84,1 4.5, 0.1 4 00,1
nodes each
layer
Number of 28,400 28,400 10,000
samples
MSE 1.74 » 1073 (L0055 000132

and 1 output layver. The learning rule used for the
BPNN model i Delta and the transfer function used
15 Sipmoid. For the RBFN model, the Learning Rule
used is Norm-Cum-Delta and the transfer function
used is (Gaussian.

The relative performance of the MRM, BPNN,
RBFN and FNN i1s shown in Table 5 and Fig. 9. The

Table 5. Prediction performances of MEM, BPNN, RBFN and FNN.
Error measurement MEM BPNN REBFN FREAM
MSE 208 % 107F L3 x107% 443 =107% 1.74x107°
MAPE Otiid LR LIRS T 1T (0110
E’E 097 5T LR s (L5703 ()14

—— MRM —— Acbaal  BPNN — RBFN — FNN |

1 HOB B3 <402 G806 TEI 8B03 A0ETO0 17T 1EA0E 14671 99130 17005 16072 HEe 006 TETE

Fig. 9.

Dets mmplas

Comparisons of prediction performance (MRM, BPNN, RBFN and FRM).



results show that amongst the 4 models evaluated,
the FRM is most superior — it has the smallest MSE
and MAPE and comparable B2 when compared with
the actual data. The RBFN performs poorly since it
has the highest error measurement compared with
the other 3 models.

In comparison with conventional neural network,
it can be observed that the FRM outperforms the
others models in the prediction of ball nose cutter's
performance and degradation during the machining
of hardened mould steel material. However, the main
constraints of the FRM lies in the fact that the opti-
mal number of fuzzy membership items cannot be
defined, automatically.

5. Conclusion

A FREM algorithmm s designed and developed for the
prediction of cutting tool performance and degra-
dation. The FEM is developed based on a multi-
layered fuzzy-rule-based hybrid system with Multiple
Repression Models (MEM) embedded into a fuzey
logic inference engine that employs Self Organizing
Maps (SOM) for clustering. The FRM reduces a com-
plex now-linear problem into a simplified linear for-
mat s0 as to enhance the acouracy of prediction and
learning speed. A case study for predicting the per-
formance and degradation of ball nose milling cut-
ters is presented to demonstrate the viability of the
FRM for the high precision machining industry. A
comparative study in terms of prediction accuracy
using 4 predictive models was made using the same
set of experimental data within the case study. It
1 shown that the FEM s far superior to conven-
tional MRM, BPNN and RBFN in terms of pre-
diction accuracy and learning speed. However, the
imitation of FEM lies in the fact that the optimal
mumnber of ey membership items cannot be auto-
matically defined. This could be a topic for further
mvest1igation.
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