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Novel on-line speed profile generation
for industrial machine tool

based on flexible neuro-fuzzy approximation
L. Rutkowski, Fellow, IEEE, A. Przybył, K. Cpałka, Member, IEEE

Abstract—Reference trajectory generation is one of the most
important task in the control of machine tools. Such a trajectory
must guarantee a smooth kinematics profile to avoid exciting
the natural frequencies of the mechanical structure or servo
control system. Moreover, the trajectory must be generated on-
line to enable some feedrate adaptation mechanism working. The
paper presents the on-line smooth speed profile generator used in
trajectory interpolation in milling machines. Smooth kinematics
profile is obtained by imposing limit on the jerk - which is the first
derivative of acceleration. This generator is based on the neuro-
fuzzy system and is able to adapt on-line the current feedrate to
changing external conditions. Such an approach improves the
machining quality, reduces the tools wear and shortens total
machining time. The proposed trajectory generation algorithm
has been successfully tested and can be implemented on a multi
axis milling machine.

Index Terms—control systems, fuzzy neural networks, intelli-
gent control

I. INTRODUCTION

IN the Computer Numerical Controlled (CNC) machine
(Fig. 1) the high feedrate of the tool, required by high

speed machining (HSM) technology, cannot be achieved at
every working point because of the mechanical and electrical
limitations of the machine. For example every electrical motor,
used as servo-drive, has limited output power, so it can produce
a limited component of centrifugal force along the toolpath.
This results in a limited attainable feedrate, which depends
on the current curvature of the geometrical path (Fig. 2) [1].
Moreover, in the CNC system, the feedrate and acceleration
cannot be changed abruptly, because of the possibility of
exciting the natural modes of the mechanical structure or servo
control system. A non smooth trajectory results in a fast wear
of a mechanical components of the machine.
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Fig. 1. Three axis milling machine used for testing the proposed algorithm.

Any control system of a CNC machine should control the
servo drives in such a way, that the feedrate is as close
as possible to the demanded value, and simultaneously the
defined speed limits are not violated. Moreover, the generated
trajectory should be smooth, to avoid exciting the natural
frequencies of the machine. The smooth trajectory can be
obtained by imposing limits on the first and second time
derivatives of feedrate, resulting in trapezoidal acceleration
profiles (Fig. 3.a). In Fig. 3.b a trapezoidal speed profile is
shown. It is very popular and widely used because of its
simplicity. Unfortunately, it does not guarantee a high quality
of the machining because of discontinuities in acceleration
reference values. In the other case, if a smooth speed profile
is used (Fig. 3.a), the acceleration profile has no discontinuity
and its trapezoidal form results from jerk limit. The seven
segments of that speed profile have maximal, minimal or zero
values of the jerk. The trajectory presented in Fig. 3.a describes
a simple move from stop to stop, but if a more complex
move is used (i.e. continuous move without stops) then these
segments may occur in different sequences and/or amounts.

The on-line speed profile generation methods are widely
investigated in literature [2]-[6]. Unfortunately, none of the
reported methods were able to adjust on-line the generated
speed profile to the changing external conditions with simul-
taneous limitation of the value of the jerk. However, it should
be emphasized that feedrate adaptation mechanisms, used in
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Fig. 2. Illustration of the exemplary model machined in the CNC system:
(a) graphite electrode milled on the CNC machine, (b) the geometrical path
of the tool designed in the CAM system, (c) the velocity limit resulting from
the local curvature of the path in the indicated exemplary fragment.
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Fig. 3. Speed, acceleration and jerk profiles: (a)with and (b)without jerk
limit. Segments 1, 7 - jerk = jmax; segments 3, 5 - jerk = −jmax;
segments 2, 4, 6 - jerk = 0.

high precision machines, strongly require such a feature.
In this work we are focused on the feedrate profile genera-

tion along to a toolpath. The feedrate and corresponding dis-
placement are then converted to coordinates of all machine’s
axes by using the inverse kinematics. It can be always realized
even if complex interpolation methods, like e.g. NURBS
(Non-Uniform Rational B-Splines) based [3], [7], are applied.
Such an approach enables the multi-axis interpolation task
to be reduced to the one-dimensional problem. In order to
simplify the terminology, in the sequel ”speed” has the same
meaning as the ”feedrate”, and ”speed profile generation” and
”trajectory generation” has the same meaning.

The trajectory generation task is realized by an interpolator
in a real time, and then calculated reference values are supplied
to the servo drives. The real time speed profile generation
methods are widely investigated in literature. For example
in [5] authors consider the real-time parametric interpolator,
which is able to generate continuous move along a parametric
curve (e.g. linear, circular, NURBS). They take into account a
machine dynamics and restrictions imposed on the feedrate
along a toolpath to limit a defined error between desired
and obtained path of the tool. Unfortunately, in this paper
the jerk limitation is not considered at all. Similarly in [8]
the authors presented the real-time fast interpolation method
which uses a look-ahead function to produce continuous move

TABLE I
MAIN FEATURES OF THE ALGORITHMS FOR JERK-LIMITED SPEED PROFILE

GENERATION

Algorithm On-line
opera-
tion

Jerk
limita-
tion

Computational
complexity

J.-Y. Dieulot et al. [2] no yes high
Y. Sun et al. [5] yes no medium
H.-T. Yau et al. [8] yes no low
H.-T. Yau et al. [9] yes yes high
M.-S. Tsai et al. [10] yes yes high
Sheng-Jung Tseng et al. [11] no yes medium
R. A. Osario-Rios et al. [12] no yes high
C. G. Lo Bianco et al. [13] yes no low
Ch. Zheng et al. [14] yes no low

our method yes yes medium

of the tool. However, the trapezoidal speed profile, considered
by these authors, does not guarantee that jerk is limited. In
[9] and [10] the authors extended the NURBS interpolation
method, taking into account the jerk limitation. They proposed
iterative method for generating the trajectory. Unfortunately,
their results are presented only for a quite simple geometrical
path, consisting of a few splines. In a practical case much
more complicated geometrical paths should be used, especially
in mold milling. In such a case it is likely that their method
could be too time consuming. In [2] there was a proposal to
use high order polynomial acceleration profile. It resulted in a
more smooth move but it required much more complicated
numerical calculations. The real necessity to use such an
acceleration profile instead of trapezoidal one was not proved.
In [11] a method for jerk-limited trajectory planning was
proposed in which the parametric interpolator is composed
of a look-ahead stage and a real-time sampling stage. In that
method the real-time sampling stage operates on the basis
of data calculated in the first (non real-time) stage. In a
result, actually it is not the real-time algorithm because it is
not able to on-line modify the generated speed profile. The
authors in [12] focused their attention on difficulties with
the on-line generation of polynomial-based trajectories, due
to high computational load demand- both hardware resources
and processing time. They proposed a hardware implementa-
tion of profile generation with jerk limitation, based on the
Field Programmable Gate Array (FPGA) without using any
multiplier. There was no discussion concerning continuous
move, because only quite simple moves from stop to stop were
considered. Some authors, for example [13] and [14], proposed
another approach, in which the trajectory is not generated
with acceleration and jerk limitations, but there is some post-
filtering method used to limit them. Such an approach causes
a substantial position tracking error and it is not preferred in
the reference trajectory generation used in high precision CNC
machines.

None of the presented methods (Table I) were able to
adjust the generated speed profile to the changing external
conditions, e.g. spindle load change, in an efficient manner.
As we indicated, some feedrate adaptation mechanisms, used
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in high precision machines, require such a feature. Moreover,
if a very complicated CAM model is machining, it is possible
that the internal memory of the interpolator has not enough
capacity to hold the whole path. In such a case the work
must be divided into separate parts, what is unfavorable. The
solution is to treat the limited memory of the interpolator as a
dynamic buffer, which can be filling up while the machine is
working. The incoming new data should be taken into account
in the on-line trajectory generation method, because of a
necessity to generate the continuous work without unnecessary
stops.

In the paper the on-line speed profile generation method
will be developed by making use of a flexible neuro-fuzzy
system proposed and studied in [15]-[18]. In our investigations
it is very important to achieve a very high accuracy of an
approximation at a certain stage of on-line speed profile gen-
eration and the flexible neuro-fuzzy approximator satisfied our
requirements. It should be noted that neuro-fuzzy structures
combine the advantages of neural networks and classical fuzzy
systems and are frequently applied to solve various problems
of control, process modeling and fault diagnosis [4], [19]-[26].
We will develop a new method for efficient generation of a
smooth velocity profile for CNC machines. The unique feature
of our method, which is distinguished from other solutions,
is the ability to quickly adjust the generated trajectory to
changing speed limits. In our approach it is possible to
modify the demanded value of the feed rate of the tool during
machine operation. This feature is very important for operating
CNC machines because of the need to protect the cutter
from the brake and spindle from the overload in high speed
machining. To our best knowledge the approach presented
in this paper is the only method providing the efficient on-
line smooth speed profile generator in milling machines. The
idea of a new method for the on-line trajectory generation
is described in Section II. In Section III.A we describe the
flexible Takagi-Sugeno neuro-fuzzy system used for the speed
profile generation, whereas Section III.B presents simulation
results. Conclusions are given in Section IV.

II. A NEW ALGORITHM FOR ON-LINE TRAJECTORY
GENERATION

Our method is based on the proposed in this paper original
concept of test trajectories (Fig. 4) which are generated in
fixed time periods TG.

A. Main idea

The interpolation of a displacement, speed and acceleration
as a function of time tL, with the jerk limitation, is based on
the well known motion equations

a (tL) = a0 + j0 · tL, (1)

v (tL) = v0 + a0 · tL + j0 ·
t2L
2
, (2)

and
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Fig. 4. Method for the on-line generation of the jerk limited trajectory
(thick gray curve) taking into account the feedrate limitation (thick black
curve). Thin gray and black curves represent test trajectories, violating and
not violating velocity limitation, respectively, along corresponding distance.

s (tL) = s0 + v0 · tL + a0 ·
t2L
2

+ j0 ·
t3L
6
, (3)

where j0 is an applied value of the jerk, and (4) fully defines
the interpolator state

s = [s, v, a], (4)

where subscript zero denotes values at a moment of a relative
time tL = 0. Based on equations (1)-(3), the on-line speed
profile generator is designed. The detailed flowchart of our
algorithm is presented in Fig. 5 and Fig. 9.

The interpolation is always based on a basis of a known
current interpolator state

ICk =
[
sCk , v

C
k , a

C
k

]
(5)

and an initially known safe trajectory (step A3 in Fig. 5) which
is shown in Fig. 4.a. The trajectory is defined by a set of
starting values

TS
k =

 {
∆tSk,1, s

S
k,1, v

S
k,1, a

S
k,1

}
, . . . ,{

∆tSk,7, s
S
k,7, v

S
k,7, a

S
k,7

}  , (6)

i.e.: displacement s, velocity v, acceleration a, jerk j and value
of the time period ∆t for seven successive segments as it is
shown in Fig. 6. The safe trajectory guides the CNC machine
from the starting point to the stop, guarantying the velocity,
acceleration and jerk limitations.

We can easily predict (step A4 in Fig. 5) a future state of the
interpolator (in a time distance TG from the current moment)
along the safe trajectory

IPk =
[
sPk , v

P
k , a

P
k

]
. (7)

Treating this predicted state as a starting point we can generate
one test trajectory (step A7 in Fig. 5), defined by the following
set of parameters

TT
k =

 {
∆tTk,1, s

T
k,1, v

T
k,1, a

T
k,1

}
, . . . ,{

∆tTk,7, s
T
k,7, v

T
k,7, a

T
k,7

}  . (8)
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which starts from the previously predicted interpolator state IPk

Step A8.Does the test
trajectory violate the speed limit?
Call the function (Fig. 9):
ValidationOfTheTestTrajectory(L, TT

k
)

==true?

Step A3.Start the indexing of the generated test
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Fig. 5. Algorithm for generating test trajectories.

The test trajectory has the task to speed up the move a
little bit - comparing with the move resulted from the safe
trajectory (Fig. 7). This speed up can be is easily done by
applying a non zero time period (∆tT1 ,∆tT2 ,∆tT3 ) values in a
seven segments speed profile. In our case sum of these three
parameters was chosen experimentally and is equal to the value
of parameter TG. After this time interval the move should be
immediately slowing down to the stop, in a way defined by
seven segments trajectory, using segments marked as 5, 6 and
7 (Fig. 3.a). The calculations required to determine parameters
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Fig. 6. Example of the seven segments trajectory, defined by a set of starting
values: a)acceleration as a function of time, b)velocity as a function of time,
c)displacement as a function of time, d)velocity as a function of displacement.

of seven segments trajectory are widely presented in literature
[1], [27]-[29] and will not be presented here.

The generated test trajectory has to be validated (step A8 in
Fig. 5 and Fig. 9), to determine if it violates or not the velocity
limit along the toolpath (thick black curve in Fig. 4). The speed
limit depends on the local curvature of the geometrical path
designed by a CAM system [1] and this dependency can be
approximated by any piecewise function, for example by the
zero or higher order polynomial [28]. In this paper we use
the first order polynomial described by the following sets of
reference knots (Fig. 2c and Fig. 7)

L =

[ {
sL1 , v

L
1

}
,
{
sL2 , v

L
2

}
, . . . ,{

sLq , v
L
q

}
, . . . ,

{
sLQ, v

L
Q

} ]
, (9)

which gives satisfactory compromise between accuracy and
computational complexity. The number of blocks Q of such a
piecewise curve depends on the complexity and length of the
geometrical path. In our work we assume that the piecewise
curve was determined in advance by a separate algorithm [8]
that will not be discussed in this paper.

If a validation algorithm determines that the test trajectory
violates the speed limit, this trajectory will be discarded (thin
gray curve in Fig. 4) what is shown in the block diagram
as step A9. Otherwise, this trajectory will be the new safe
trajectory, valid after TG time period (steps A10 and A11 in
Fig. 5). This procedure is repeated in successive time periods
and consecutive test trajectories are generated, each starting
from the new working point (Fig. 4.b, Fig. 4.c). The final
smooth speed profile (Fig. 4.d) is formed by a merger of short
subsequent fragments of the safe trajectory.

Simultaneously, in a real time, with generating and validat-
ing the test trajectories, a motion controller is working (steps
B1-B6). It performs the interpolation of a displacement, speed
and acceleration along a tool path in the fixed time steps ∆tL.
At this point the proper (adequate) inverse kinematics is also
used to generate the reference values for all machine’s servo
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Fig. 7. Example of a test trajectory as a function of distance and intersections
of its segments with speed constraints blocks. Grey area shows the currently
analyzed sectors in the iterative validation algorithm of the test trajectory.

drives. This method is commonly known [29], [30] and will
not be presented in this paper.

B. Method of validation of the test trajectory

In our system the validation algorithm of a test trajectory
(Fig. 9) plays a key role. Analytical solution of such a task
is very complicated, because velocity constraints are linear
functions of a displacement given by

vLimit (sL) = vL0 + (vL1 − vL0) ·
sL
∆s

, (10)

where

sL = ⟨0 . . .∆s⟩ , (11)

and vL0, vL1 are parameters of currently analyzed sector
∆s, resulting from the velocity constraint curve (Fig. 7), tL
and sL are time and position relative to the origin of the
considered sector (gray area in Fig. 7), while generated speed
and displacement profile are polynomial functions of time,
given by (2) and (3).

Note that in Fig. 6.d as well as in Fig. 7 the velocity profiles
are shown as a function of a displacement. Creating these
figures was only possible on a basis of a performed iterative
simulation.

It is clear that the validation of the test trajectory can not
be done in one step. The velocity limit curve and the test
trajectory are defined in blocks or segments, respectively. As
a result the validation algorithm must be an iterative, with
the number of the iterations resulting from the number of
blocks of the limit curve and values of parameters of the
test trajectory. A length of currently analyzed sector (∆s)
in successive iterations results from an intersection of the
trajectory segments and the speed constraints blocks (Fig. 7).
Analyzed sectors must be iterated in such a way that they
do not cross the boundaries resulting from the blocks of the
velocity limit curve and the segments of the test trajectory.

Our method, which is based on a quadratic approximation of
the test trajectory, requires to satisfy the following limitation;
the value of ∆s cannot be greater than parameter ∆sA,
which is explained in the sequel in this section, otherwise the
approximation accuracy will be poor. As a result the sector’s

length is determined as a minimal value of three values (∆sA,
∆sT , ∆sL), as it is shown in Fig. 7, i.e.

∆s = min(∆sA,∆sT ,∆sL). (12)

Appropriate iterations to determine ∆s are shown in Fig. 9 as
steps C2-C6 and steps C13-C18.

To validate the whole test trajectory, all successive sectors
must be tested until the trajectory segments (8) end (step C19
in Fig. 9). If any of the tested sectors violates the speed limit

v (sL) ≤ vLimit (sL) , sL ∈< 0, . . . ,∆s >, (13)

where

v (sL) = v (sL, v0, a0, j0) , (14)

then the whole tested trajectory must be discarded (step C12
in Fig. 9)

In order to check analytically if the test trajectory at a
given sector violates or not the speed limit, we should have
it in a form of a function of the displacement. Unfortunately,
there is no simple analytical projection, converting the test
trajectory from a function of time (Fig. 6.b) to a function of
distance (Fig. 6.d). It results from the fact that equation (14)
is an implicit function. Therefore, we propose a neuro-fuzzy
structure to build an efficient validation system checking if the
test trajectory violates the velocity limit. More precisely, we
develop the algorithm, depicted in Fig. 8, in which the neuro-
fuzzy structure efficiently aids the quadratic approximation
given by

v (sL) ≈ vA (sL) = C0+C1 ·sL+C2 ·s2L, sL ∈< 0, . . . ,∆s >
(15)

of function (14). The neuro-fuzzy system is used in our
concept to aid the classical quadratic approximation of the
speed profile, but not to directly approximate this profile.
Such an approximated function reduces mentioned earlier
complex calculation, checking condition (13), to a simple task
of solving a quadratic inequality, related to checking condition
given by

vA (sL) ≤ vLimit (sL) , sL ∈< 0, . . . ,∆s > . (16)

The effective method of determining the coefficients of
equation (15) with the help of neuro-fuzzy system will be
presented in the following part of this section.

The quadratic approximation of function (14) is always
possible with a defined maximum acceptable approximation
error ( vE < vEmax in Fig. 10), if the approximation distance
∆s does not exceeds ∆sA, which depends on the current
curvature of the approximated function (14). The value of
∆sA, depends on the three parameters, i.e.

∆sA = ∆sA (v0, a0, j0) , (17)

which fully defines the interpolator state at the origin of the
analyzed sector (Fig. 7).

Unfortunately, this dependency is not known in advance and
can only be obtained by the trial and error method, based on
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Fig. 8. Flowchart illustrating how the neuro-fuzzy structure efficiently
aids the quadratic approximation of the test trajectory, as a function of the
displacement in the subsequent segments.

many repeated iterative simulations, with an usage of motion
equations (1)-(3). Because the trial and error method is very
time consuming, it is not suitable to use in the validation
system. Fortunately, we can use the neuro-fuzzy structure to
approximate dependency (17) in an efficient manner.

Finally, if we know the value of ∆sA, we can approximate
function (14) in the form of (15) making additional analytical
calculations, resulting from the use of Dirichlet boundary
conditions, i.e.:

C0 = v0, (18)

C1 = −3 · v0 + v1 − 4 · vH
∆s

(19)

and

C2 =
2 · v0 + 2 · v1 − 4 · vH

∆s2
. (20)

The proposed in this paper boundary conditions require the
equality of the values of the approximated function (14) and
their quadratic approximation (15) at the start point (v0), half
point (vH ) and end point (v1) of the approximation distance
∆s (Fig. 10). The velocity v0 at the origin of the sector is
already known (Fig. 7), but the value of vH and value of v1
are not known and should be determined here. At first the
corresponding values of the relative times (∆TH ) and (∆T1)
must be determined. It can be easily done by a commonly
known bisection method with the utilization of the motion
equation (3) and the values of the interpolator state described
by

IS = [s0, v0, a0] (21)

at the origin of analyzed sector. The move defined by the test
trajectory is progressive (i.e. v (tL) ≥ 0) within considered
range, so the bisection method with over a dozen simple
iterations is sufficient to obtain satisfactory accuracy (step C8
in Fig. 9). In the bisection method the maximum value of
∆Tmax for search algorithm is set to a minimal positive value
of relative time, at which the velocity described by formula
(2), reaches the value equal to zero. If the velocity does not
reach the zero for any positive value of the relative time, then

Estimation of
the max
sector's length

Start ValidationOfTheTestTrajectory(L, TT
k)

Step C1. Enter starting values of local variables:

r :=1, s
0
:=sT

k,r
, v

0
:=vT

k,r
, a

0
:=aT

k,r

Steps C2,3. Compute s
N
’ := sT

k,r+1
; DsT=s

N
’-s

0

Step C6. Find the sector’s length: Ds := min(DsT , DsL, DsA)

Step C7. Calculate the local parameters of the the velocity limit L

q

Step C17. Switch to the next

segment of the test trajectory:

0
s :=s

N
’

v0:=vT

k,r+1

0 ,r
a :=aT

k +1

r := r+1

Step C18. Updating values of the local variables

s
0
:=s

0
+Ds v0 := v0+a0•T1 +j0•T1

2 /2 a
0
:=a

0
+j

0
•T

1

Y

N

Y
Step C14. Check the stop condition:
End of the segments of the test trajectory?

sN’’ := sL
q+1; DsL=sN”-s0

Step C5b. j0=+jmax; DsA =NF1(v0, a0)

Step C5c. j0=-jmax; DsA =NF3(v0, a0)

Step C5a. j0=0; DsA =NF2(v0, a0)

Step C4. Select

the appropriate

jerk value

Step C8. Compute the local variables (T1, TH) using the bisection
method and the motion equations at known starting values:v

0
,a

0
, j

0
:

- time to reach the given displacementT , T1 H D Ds and s/2, respectively

T
1

:=CalculateTDs(Ds, v
0
, a

0
j
0
);

,

TH :=CalculateTDs(Ds/2, v0, a0, j0)

Step C10. Calculate the parameters C0, C1, C2 (18)-(20) of the
quadratic equation (15)

Step C11. Is there at least one real root of the quadratic equation

(16) in the range [0..DS], or total time duration limit is reached ?

Y

Step C15. Does the
end of the sector

indicate the next block

of the velocity limit
curve L?

(s
N
’<s

N
”) and

( ” D AsN <s0+ s )?N

Step C16. Switch to a next block of

the velocity limit curve q:=q+1

Step C9. Calculate the auxiliary local variables v
1

and v
H

-

velocities at a given point of the test trajectory t
L
=T

1
and t

L
=T

H
,

respectively, based on the motion equations (2)

Designation of the next sector to check

r=1  or  r=7 ? r=2  or  r=4  or  r=6 ?

r=3

r=5?
or

Y
Y

r >6 ?

Step C19. Return false

Quadratic approximation of the analysed sector

V
L 0

= vL + tang
VL

•(s
0

- sL )

tang
VL

:=(vL
q+1

- vL
q

)/(s L
q+1

- sL )q

q VL 1 = VL 0 + tangVL•Ds;

Checking the speed limit violation
and the total duration time limit of the validation process

Step C12. Return true

Y

Step C13. Does the end of the sector indicate a new
segment of the trajectory? (s

N
’<s

N
”) and (s

N
’ <s

0
+DsA )?

the auxiliary values:

Fig. 9. Flowchart illustrating validation of the test trajectory.

value of ∆Tmax is set to reasonable limit equal to one second.
The minimal value for search algorithm is set to zero.

If the values of (∆TH ) and (∆T1) are calculated, then
the values of vH and v1 can be easily determined (step C9)
on a basis of the motion equation (2). Finally at step C10
of the presented algorithm, parameters C0, C1 and C2 of
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Fig. 10. Quadratic approximation of a velocity profile as a function of
displacement.

the quadratic function (15) can be simply calculated using
formulas (18)-(20). As a result we can use the quadratic
inequality (16) instead of the complicated formula (13) which
significantly simplifies the trajectory validation algorithm. In
the next step (C11) we should solve the quadratic inequality
(16) to check whether the analyzed sector of the test trajectory
violates or not the speed limit. It can be easily done by
checking if the adequate quadratic equation has at least one
real root in the range [0,∆s]. Because v0 has always value
less than vL0 (Fig. 7), the real root within a range [0,∆s] is
the velocity violation point. As it was previously explained,
in such a case validation of the test trajectory is completed
(step C12) with a result equal to true. This procedure is also
terminated with a result equal to true if the total duration time
limit (TG) of the validation procedure is reached. In another
case the steps C13-C19 are performed to switch to the next
sector in the iterative validation algorithm.

III. FLEXIBLE TAKAGI-SUGENO NEURO-FUZZY SYSTEM
FOR THE SPEED PROFILE GENERATION

A. Description of the system

The flexible Takagi-Sugeno neuro-fuzzy approximator is
an important part of the proposed in the paper an original
algorithm or the on-line speed profile generation. It allows to
implement our approach in a typical real-time controller and
to eliminate the lookup table method, which cannot be used
because of the limited amount of the memory.

In the last decade different structures of neuro-fuzzy net-
works have been presented, often referred to in the world
literature as neuro-fuzzy systems [6], [15], [17], [18]. As it
was indicated in the Introduction, they combine the advantages
of neural networks and classical fuzzy systems. In particular,
the neuro-fuzzy networks are characterized - in contrast with
neural networks - by a interpretable representation of knowl-
edge represented by fuzzy rules. As generally known, the
knowledge in neural networks is represented by the values of
synaptic weights, and therefore is completely not interpretable,
for instance, for a user of a medical expert system based
on neural networks. Moreover, neuro-fuzzy networks can be
trained, using the idea of error backpropagation method, which
is the basis of learning of multilayer neural networks. The
learning usually applies to membership function parameters
of the IF and THEN parts of the fuzzy rules. It should be
emphasized that neuro-fuzzy systems are universal approxi-
mators.

The advantages of neuro-fuzzy networks are the reason for
their common application in classification, approximation and
prediction problems. Most of neuro-fuzzy structures described
in the world literature utilizes the Mamdani type inference
or the Takagi-Sugeno schema. The Mamdani type inference
consists in connecting the antecedents and the consequents of
rules using a t-norm (most often the t-norm of the min type or
of the product type). Then the aggregation of particular rules is
made using a t-conorm. In case of the Takagi-Sugeno schema,
the consequents of the rules are not fuzzy in nature, but are
functions of the input variables. Less often the logical infer-
ence is applied, which consists in connecting the antecedents
and the consequents of rules using a fuzzy implication that
satisfies the conditions of definition of fuzzy implication.
In case of an inference of logical type the aggregation of
particular rules is made using a t-conorm [17], [18].

It is well know [18] that introducing additional parameters
to be tuned in neuro fuzzy systems improves their performance
and they are able to better represent the patterns encoded in
the data. Therefore, in this paper, we incorporate flexibility
concepts into the neuro-fuzzy system: certainty weights to the
aggregation of rules and to the connectives of antecedents.

The flexible neuro-fuzzy system was used in our method
because it is an excellent tool for solving approximation
problems. However, alternatively other techniques (e.g. neural
networks), can be incorporated into scheme depicted in Fig.
9, instead of flexible neuro-fuzzy systems. The novelty of our
approach lies in developing the original algorithm for speed
profile generation, by using the concept of the test trajectories,
rather than in developing an approximator.

The algorithm in Fig. 9 uses the flexible neuro-fuzzy Takagi-
Sugeno system. The neuro-fuzzy system determines the max-
imum value of the sector’s length (steps C5a-C5c in Fig. 9),
for which the quadratic approximation of the trajectory at k-th
step is possible with an accuracy not worse than vEmax (Fig.
10)). The neuro-fuzzy system determines the value of ∆sA

(Fig. 12 and Fig. 8) for current values of v0, a0, and for given
values of jerk (j0 = −jmax, j0 = 0, j0 = +jmax).

We will apply the two-input and single-output flexible
Takagi-Sugeno neuro-fuzzy system mapping X → Y, where
X ⊂ R2 and Y ⊂ R. The rule base is given by

R(r) :


IF x̄1 isA

r
1

(
wτ

1,r

)
AND x̄2 isA

r
2

(
wτ

2,r

)
THEN

f (r) (x̄) = cf0,r +
2∑

i=1

cfi,rx̄i


(
wdef

r

)
, (22)

where r = 1, 2, . . . , N . The construction of the system is
based on the following parameters and weights:

- parameters of membership functions µAk
i
(x̄i), i = 1, 2,

r = 1, 2, . . . , N ,
- parameters cf0,r, cfi,r, i = 1, 2, r = 1, 2, . . . , N , in linear
models describing consequences,

- certainty weights wτ
i,r ∈ [0, 1], i = 1, 2, r = 1, 2, . . . , N ,

describing importance of antecedents in the rules,
- certainty weights wdef

r ∈ R, r = 1, 2, . . . , N , describing
importance of the rules.
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Fig. 11. Flexible Takagi-Sugeno neuro-fuzzy system used for the validation
of the test trajectory.

The aggregation in the Takagi-Sugeno model, described by
the rule base (22), is in the form

ȳ = f (x̄) =

N∑
r=1

wdef
r · f (r) (x̄) · µAr (x̄)

N∑
r=1

µAr (x̄)

, (23)

where

µAr (x̄) = T ∗ {µAr
1
(x̄1) , µAr

2
(x̄2) ;w

τ
1,r, w

τ
2,r

}
(24)

and T ∗ is a weighted t-norm [17], [18]. Weighted t-norm in
the two-dimensional case is defined as follows

T ∗
{

µAr
1
(x̄1) , µAr

2
(x̄2) ;

wτ
1,r, w

τ
2,r

}
=

T

{
1 +

(
µAr

1
(x̄1)− 1

)
· wτ

1,r,
1 +

(
µAr

2
(x̄2)− 1

)
· wτ

2,r

} . (25)

The weights wτ
1,r and wτ

2,r are certainties (credibilities) of both
antecedents in (25). Observe that:

- If wτ
1,r = wτ

2,r = 1 then the weighted t-norm is reduced
to the standard t-norm.

- If wτ
1,r = 0 then T ∗ {µAr

1
(x̄1) , µAr

2
(x̄2) ; 0, w

τ
2,r

}
=

1 +
(
µAr

2
(x̄2)− 1

)
· wτ

2,r.
The general architecture of the flexible Takagi-Sugeno sys-

tem is depicted in Fig. 11. As we can see, it is a multilayer
network structure. To train it, the idea of the error backprop-
agation method may be applied [17], [18]. Let us define the
learning sequence as (x̄1,d1) , (x̄2,d2) , . . . , (x̄Z ,dZ), where
x̄z = [v0z, a0z], dz =

[
∆sAz

]
, z = 1, 2, . . . , Z. Based on the

learning sequence we determine all parameters and weights of
fuzzy system (23).

B. Experimental results

The neuro-fuzzy structure (23) aids the validation algorithm
used in the trajectory generation system. This system is used
as an approximator of the highly nonlinear dependency (17).
Because the jerk can have only three discrete values (Fig. 3.a),
we can use three simple neuro-fuzzy system for these three
separate cases instead of a complex one. In that case each of
the three neuro-fuzzy systems approximate a highly nonlinear
function (Fig. 12) for different values of the jerk (steps C5a,
C5b and C5c in Fig. 9). We use neuro-fuzzy system NFS1
given by

0

0.4

-5

5
0

10

0

0.4

-5

5
0

10

a) b)

v [m/s] v [m/s]

Ds  [mm] Ds  [mm]

a [m/s ]20 0
a [m/s ]20 0

AA

Fig. 12. Graphical representation of ∆sA obtained from simulations as a
function of velocity and acceleration at given values of the jerk: a)j0 = 0,
b)j0 = 250.

∆sA = NFS1 (v0, a0) , (26)

when we analyze segments r = 1, 7, neuro-fuzzy system NFS2
given by

∆sA = NFS2 (v0, a0) (27)

for segments r = 2, 4, 6 or neuro-fuzzy system NFS3 given
by

∆sA = NFS3 (v0, a0) , (28)

for segments r=3, 5.
A minor disadvantage of such a simplification is the neces-

sity to declare the value of jmax at the stage of designing the
control system, in principle before training the neuro-fuzzy
system. This is not a big drawback because the value of jmax

is never changed during the entire use of the machine. The
selection and fixing the value of the jmax as well as the
initial tuning phase of the used neuro-fuzzy system must be
done only once, at the stage of designing the system. It is
possible to prepare several flexible neuro-fuzzy systems, each
learned in advance (for different values of the jmax typically
used in practice) and use them later without modification. The
significant advantage of such an approach is the simplification
of the neuro-fuzzy system and the whole algorithm is more
efficient in a real time implementation.

Three independent flexible neuro-fuzzy Takagi-Sugeno sys-
tems were prepared for the verification of the test trajectory
(steps C5a-C5c in Fig. 9). Each of these systems (26)-
(28) determines the output ∆sA for another jerk j0 from
the set {−jmax, 0,+jmax}. Training data, which were used
in the learning process, were generated by trial and error
method. The idea of generate the training data was based on
the assumption, that the outputs ∆sA, should have greater
values, what results in decreasing number of steps valida-
tion algorithm of a test trajectory. Obviously, the condition
VE < VEmax should be satisfied (Fig. 10).

We used neuro-fuzzy systems given by (23) characterized
by the Gaussian fuzzy sets, 30 rules (N = 30) and algebraic
t-norms. We employed the Fuzzy C-Mans algorithm to find
initial values of membership functions parameters (m = 2.0,
1000 steps) [15], [17], [18]. We also initialized weights of
antecedents wτ

i,r = 1, i = 1, 2, r = 1, 2 . . . , N , and weights
of the rules wagr

r = 1, r = 1, 2 . . . , N . The learning data
length for each of three neuro-fuzzy systems (26)-(28) was
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Fig. 13. The velocity limit (thick black), the smooth trajectory obtained with
the three neuro-fuzzy systems (thin black), and the smooth trajectory obtained
with the trial and errors method (gray).

Z = 1682. The system was learned by the backpropagation
method (µ = 0.15) with momentum (λ = 0.10) by 100000
epochs. The final average root mean square error (RMSE)
was equal 0.0996 for three used neuro-fuzzy systems. Our
approach allows to easily implement the presented algorithm
in a microprocessor system used in the CNC machine.

The final trajectory obtained with the help of the three
neuro-fuzzy systems (26)-(28) is shown in Fig. 13. The
comparison with the trajectory obtained by the trial and errors
method shows that there are some insignificant differences
between them, resulting from the neuro-fuzzy systems approx-
imation errors. Despite the slight differences between these
two cases, the ”neuro-fuzzy based” trajectory fully guarantees
the required limits of jerk, acceleration and velocity, and in
result it is suitable to use in the CNC system.

In Fig. 13 some areas are enlarged to better illustrate
the specific features of the presented algorithm. In the first
indicated area (Fig. 13.a) the small velocity fluctuations are
visible. It results from the fact, that the final trajectory is
formed by a merger of short fragments of the successive test
trajectories. Generally this is a drawback of the presented
algorithm. However, if the amplitudes of these fluctuations
are small, then it does not influence negatively on the quality
of the work. Their amplitude is proportional to the length
of the connecting pieces, which depends in turn on the time
period TG used to generate and validate the subsequent test
trajectories. Decreasing this time period causes the reduction
of the amplitude, but it requires more computational power
of the computer system. In our work we used TG with
experimentally chosen value equal to 2 milliseconds.

The next enlarged fragment (Fig. 13.b) shows that un-
favorable slowdown occurs if the speed limit curve drops
sharply. This drawback results from the lack of the global
velocity optimization techniques. However, preprocessing of
the velocity limit curve, i.e. eliminating the sharp drops, could
be used to prevent that adverse slowdown (Fig. 13.c).

Despite of these minor drawbacks, a great advantage of our
algorithm is that it is able to adjust the generated speed profile
to the changing external conditions, e.g. spindle load change,
in an efficient manner. As it was indicated in the Introduction,
in our approach it is possible to modify the demanded value
of the feed rate of the tool during machine operation. This is
illustrated in simulation presented in Fig. 13.d in which the
speed limit is decreased in order to protect the spindle from

the overload. As we can see, the algorithm is able to on-line
modify the generated speed profile.

IV. CONCLUSIONS

In this paper we presented a new algorithm for the on-
line speed profile generation for industrial machine tool. The
unique feature of our method is the ability to quickly adjust
the generated trajectory to changing speed limits. It is possible
to modify the requested value of the feed rate of the tool
during machine operation. This feature is very important
for operating CNC machines because of the need to protect
the cutter from the brake and spindle from the overload in
high speed machining. Our method, based on the neuro-fuzzy
approach, allows the system to work properly and quickly,
and to construct the trajectory generator operating on-line. It
should be noted that neuro-fuzzy structures can be adopted for
realization in hardware, e.g. in the CMOS technology [31].
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