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Abstract

In this paper we propose a new approach for designing an ensemble applied to stream data
classification. Our approach is supported by two theorems showing how to decide whether a new
component should be added to the ensemble or not, based on the assumption that such an action
should increase the accuracy of the ensemble not only for the current portion of observations
but also for the whole (infinite) data stream. The conclusions of these theorems hold with a
certain probability (confidence) set by the user. Through computer simulations, among others,
we show that decreasing the confidence that decision based on the finite portion of the stream is
the same as based on the whole (infinite) data stream only slightly improves the accuracy at the
expense of significant memory consumption. Moreover, we will introduce a novel procedure of
weighting ensemble components, i.e. decision trees, by assigning a weight to each leaf of the
tree. In previous approaches a weight was assigned to the whole ensemble component. The new
approach is based on the observation that probability of the correct tree outcome is different in
various tree sections.
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1. Introduction

Data mining is a subject widely investigated by many scientists all over the world. How-
ever, most of developed methods were designed to analyze databases of a finite size. Nowadays
the technological development allows to obtain and process huge amount of various data. The
number of data elements that is available can not be established in advance. Therefore a new
field of study emerged called stream data mining [1] [6] [12] [16] [24] [25] [28] [29] [33] [48]
[50]. The problem is to obtain methods that can fast and efficiently extract information from
constantly incoming data. Because of the high rate and great complexity of incoming data, pre-
viously created algorithms are not applicable. Depending on the particular problem tasks can
be very different, e.g. classification [23] [31] [32] [37] [42] [45] [46] [47], clustering [4] [19],
[49], regression [35], summarization [10], association rule learning [9] and anomaly detection
[11]. In this paper we focus on the first task, i.e. the problem of assigning new data element
to one of predefined classes. In the literature there exists a wide range of algorithms designed
for static data classification. Most commonly known methods are based on decision trees, neu-
ral networks, K-NN, Naive Bayes classifier, support vector machines and ensemble methods.
These methods are inspirations for new algorithms developed and dedicated to stream data min-
ing, like the McDiarmid Decision Tree and Gaussian Decision Tree [38] [39] [40] [41], the Very
Fast Decision Tree (VFDT) [13] and the Concept-adapting Very Fast Decision Tree (CVFDT)



[21], On Demand Classification [2], ANNCAD Algorithm [26], the Online Information Network
(OLIN) [27], the Streaming Ensemble Algorithm (SEA) [43], the LWClass Algorithm [17], the
SCALLOP Algorithm [3], the Accuracy Updated Ensemble algorithm (AUE) [7] and the On-
line Accuracy Updated Ensemble algorithm (OAUE) [8]. Many of these methods exploit the
particular advantages of the algorithms previously developed for static problems of data mining.

One of the most promising ideas for designing an efficient system for data stream classifica-
tion is to create an ensemble of components. Despite the fact that many ensemble methods have
been already introduced in the literature, there are still some issues that have to be addressed.
One of the most important problems in designing an ensemble method is addressing the ques-
tion: "How many components should be put into the ensemble?’. Too small ensemble can not be
sufficient enough to cover the whole decision space and therefore the properties of this method
could not be fully exploited. On the other hand, too large set of ensemble components may
not satisfy memory restrictions and can significantly slow down the decision making process. In
most ensemble methods the maximum pool of components that will take part in the classification
process has to be defined in advance by the user. This approach was used successfully in many
static data problems. However, when we are faced with the stream data challenges, it turns out
not to be suitable. The problem with this approach is that it is impossible to establish in advance
the proper number of ensemble components that will be optimal in some sense for the whole
data stream. Because the number of training data elements is growing constantly, therefore it is
potentially possible to create an ensemble of infinite size.

Despite of the drawbacks, many algorithms use a fixed size of ensemble, see e.g. [22] or [36].
In other methods, a pruning mechanism was introduced to reduce the number of ensemble mem-
bers [15]. However, none of those methods solve the problem on how to decide if the ensemble
component should be added, by considering its usefulness to the whole ensemble according to
infinite data stream. Even for static problem not much has been done to develop a method of
finding the optimal number of ensemble components (see [20] and references cited therein).

In this paper the issue of establishing the proper size of ensemble that will be optimal for the
whole (infinite) data stream, by taking into account the ensemble performance and memory re-
quirements, will be considered. To our best knowledge such procedure has never been previously
studied in literature.

The main novelty and characteristics of our method can be summarized as follows:

1. We will prove the theorem (see Theorem 1) showing how to decide whether a new compo-
nent should be added to the ensemble or not, based on the assumption that such an action
should increase the accuracy of the ensemble not only for the current portion of observa-
tions but also for the whole (infinite) data stream. The conclusion of this theorem will be
valid with probability at least 1 — y;, where y; > 0 is a parameter set by the user.

2. We will generalize Theorem 1 (see Theorem 2) by introducing a parameter ¥ > 0 describ-
ing a minimal increase of the accuracy required in order to add a new component to the
ensemble. The conclusion of this theorem will be valid with a probability at least 1 — 7y,
where y, > 0 is a parameter set by the user.

3. We will introduce a novel procedure for weighting (see formulas (18) and (19)) ensemble
components, i.e. for decision trees, by assigning a weight to each leaf of the tree. In
previous approaches a weight was assigned to the whole ensemble component. The new
approach is based on the observation that probability of the correct tree outcome is different
in various tree sections. Therefore, we can use this additional knowledge to increase the
accuracy of the whole ensemble.



4. We will show in several experiments that our method of the ensemble size adjustment
leads to the best performance for the three real datasets (see Table 2), comparing with
well-known 10 algorithms studied by previous authors, and moreover our method is math-
ematically justified. The simulations for synthetic data (see Table 1) also confirm the
usefulness of our method.

5. We will show (see Table 3) that decreasing the confidence (increasing parameter y,) that
decision based on the finite portion of the stream is the same as based on the whole (infi-
nite) data stream only slightly improves the accuracy at the expense of significant memory
consumption (number of trees in the ensemble).

6. We will show through computer simulations that by increasing the value of parameter
Y (see point 2 above) we significantly reduce the ensemble size, while accuracy is less
effected.

The rest of the paper is organized as follows. In section 2 a new method for determining the
proper size of the ensemble is shown and in section 3 the performed experimental investigation
is described. Section 4 contains the conclusions.

2. The main result

In the stream data scenario we consider a sequence of chunks S, ¢t = 1,2, ..., each having
n elements. In the sequel S, = S, denotes a current investigated chunk and for clarity of paper
the index ¢ will be omitted. Let I" denote the ensemble of components 7;, j = 1,..., Il and I'*
denote the ensemble expanded by one additional component (I'* = I' U {7yr11}). The problem
is to decide if the new created classifier 7.1 should be added to the ensemble I'. The added
component should provide an increase of accuracy of the ensemble not only for S, but also for
the whole (infinite) data stream S ... Let us define the function Gr(X;) as

1 if X; is correctly classified,
0 otherwise,

Gr(X;) = { (1)

where X;, i = 1, ..., n, is the i-th data element in the investigated data chunk S ,,. Now the accuracy
of the whole ensemble can be written as follows

Y1 Gr(Xy)
Pr(S,) = Z5———, 2)
2y Gr+(X)
Pr(S,) = S5———, 3)
n
where Gr(X;), i = 1,...,n, are from the Bernoulli distribution with mean y and variance (1 — )
and Gr+(X;), i = 1,...,n, are from the Bernoulli distribution with mean ., and variance . (1 —

He)-
Let us present the following theorem to resolve problem of deciding if the size of the ensem-
ble should increase:

Theorem 1. Let S be an infinite stream of data and S, = {X1, Xz, ..., Xy} C S« be a set of
n independent random variables. Moreover, let T and Tt denote two ensembles where T' =
{t1, 72, ..t} and T =T U {tyr1}. If the following inequality holds

PF*(Sn)_Pl"(zn) >Z]_yl%, 4)



where zi_,, is the (1 — y1) quantile of the standard normal distribution N(0, 1), Pr(S,) and
Pr+(S,) are defined by eq. (2) and (3), respectively, then with probability at least 1 — vy,

Pr+(Se) > Pr(Sw). )

Therefore, if the conditions of Theorem 1 are satisfied, then, with at least 1 — v level of
confidence, we can say that by adding a new component 7,1 to the ensemble we obtain the
increase of the accuracy, not only for S, but also for the whole data stream S'o,.

Proof of Theorem 1. According to the Multivariate Central Limit Theorem [44] the distribution
of the pair (Pr(S,), Pr+(S,)) for sufficiently large » is well approximated by the bivariate normal
distribution with mean vector (i, i+ ), and covariance matrix

:[ Var(Gr)/n cov(Gr, Gr+)/n ]

u(l—w/n  covin ©
cov(Gr, Gr+)/n Var(Gr+)/n ’

cov/n  p(l = pi)/n

where cov := cov(Gr, Gr+). In consequence both marginal distributions are normal: Pr(S,) is
from N(u, u(1 —p)/n) and Pr+(S,) is from N(u, u+ (1 — ) /n). Since Pr(S ) and Pr+(S,) have
normal distributions and (Pr(S,), Pr+(S,)) has a bivariate normal distribution then, according to
the proof presented in [34], the difference Pr+(S,)— Pr(S ) has the following normal distribution

(7

N( . —u,”(l — 1) + (1 —#+)—2COV).

n

Obviously Pr(S«) = ¢ and Pr+(S«) = u+. Then, with probability at least 1 — y; the following
inequality is true

1—p)+ 1- —2cov
Pre(Sy) = Pr(S») < Pr(Sw) = Pr(Se) + 21—y \/#( ) m(n 1) C®
where z(1_,,) is the (1 — y1)-th quantile of the standard normal distribution. Therefore, if
1—pwp)+ 1- — 2cov
Pre(S1) = Pr(S,) > 200y PO pt) Z2c0r ©)
then, with probability (1 — y),
Pr+(Sw) > Pr(S«). (10)
The values of u, p,. and cov are unknown, however they are bounded as follows:
1
u(l —p) < 7 (11)
1
pa(l = py) < Py 12)
1
lcov] < Vu(l — (1 — py) < 7 (13)



Using (11)-(13) the value of the right hand side of inequality (9) can be limited in the following
way

pu(l =) + pe (1 = py) — 2cov 1
Z(1-yy) \/ i p i < Z(l,yl)ﬁ. (14)
Therefore, if
1
PF*(Sn)_Pr(Sn) >Z(1—yl) (15)

N
then (9) is also satisfied. From this we can conclude that if (15) is true, then with probability at
least 1 — 1, the addition of classifier 7y, will result in an increase of accuracy.

Let us now describe the procedure of making a decision whether a particular classifier should
be added to the ensemble. First, an ensemble I'* is created by combining classifiers from I" and
temporary classifier 7., learned on the last data chunk. Next, a new chunk of data elements is
collected. Based on the new data chunk the values of Pr and Pr+ are calculated using (2) and (3),
respectively. Then, if the conditions of Theorem 1 are satisfied, the classifier 7., is added to the
ensemble. However, if condition (4) is not fulfilled, then the investigated classifier is discarded.
Next a new classifier is created based on that chunk and is labeled by 7 /¢y,

Sometimes the component, that is found to be useful as a new ensemble member according to
Theorem 1, can only slightly increase the accuracy of the whole ensemble. This is an undesirable
property because that component uses up memory resources with a little performance increase
of the whole ensemble. Therefore, a new theorem with an additional parameter ¥ is proposed.
This parameter defines the minimal increase of the accuracy that has to be gained in order to add
the component 74 to the ensemble.

Theorem 2. Let S be an infinite stream of data and S, = {X1, Xz, ..., Xy} C S« be a set of
n independent random variables. Moreover, let T and Tt denote two ensembles where T' =
{t1,72,..Tin} and T = T U {1jn1}. If the following condition is satisfied

1
Pr«(Sn) = Pr(S») - A >, (16)
where Pr(S,) and Pr-(S,) are defined by eq. (2) and (3), respectively, and ¥ > 0, then with

probability at least 1 -y,
Pri(Se) — Pr(S«) > V. (17)

Proof of Theorem 2. The proof of this theorem can be conducted in the same manner as the
proof of Theorem 1.

Based on the presented theorems we propose a new procedure of obtaining the optimal num-
ber of components in the ensemble. The procedure is presented in the form of the pseudocode in
Algorithm 1.



Algorithm 1 The Dynamically Expanded Ensemble Algorithm (DEEA)

Require: S, = {X|, X3, ..., X,} - set of data elements, ¥ > 0, I" - ensemble of components, T/

1
2
3
4
5:
6
7
8
9

- new classifier, I'" = T U {T/emp }

:fori=1,...,ndo
obtain value of Gr(X;) and Gr+(X;)

. end for

. calculate Pr(S,) and Pr-(S,) using (2) and (3)

if Pr«(S,) — Pr(S,) — 21—y, Lf > ¥ then

I'=TU Tyemp

. else

: TEMOVE Tiemp

: end if

3. Experimental Results

3.1. Experiments settings

We will investigate the performance of the proposed method on 7 synthetic and 3 real data

bases. Synthetic data bases were obtained with the use of the MOA (Massive Online Analysis)
[5] free open-source software (version: MOA Pre-Release 2015.10 ). This framework is used
to compare the performance of our method with the results obtained by other known in the
literature algorithms. The synthetic databases consisted of 1 million data elements generated
using the following settings:

Agrawal Generator (denoted by AgrGen) - generates the data from some loan func-
tion. These data were generated with default settings of the MOA framework (function
1, instance random speed 1, peturb fraction 0.05). The generated dataset consisted of six
numeric (salary, commission, age, hvalue, hyears, loan) and three nominal (elevel, car,
zipcode) attributes. Each data element belongs to one of two classes: groupA or groupB.

Hyperplane Generator (denoted by HypGen) - simulates the problem of predicting the
class to data element where the decision class boundary is described by the rotating hy-
perplane. Obtained dataset was generated with the default settings of the MOA frame-
work (instance random seed 1, number of classes 2, number of attributes 10, magnitude
of change 0, noise percentage 5, sigma percentage 10). Each data element consisted of 10
values of numerical attributes and the assigned class label (class1 or class2).

LED Generator (denote by LED) - generator produces a data to analyze the problem of
predicting the digit displayed on a 7-segment LED display. These data were generated
with default settings of the MOA framework (instance random seed 1, noise percentage
10). We have to our disposal data elements with 24 binary attributes. Each data element is
assigned to one of ten classes (0, 1, 2, 3,4,5,6,7, 8, 9).

Random Decision Tree (denoted by RDT) - stream of data is generated based on ran-
domly generated tree. Obtained data were generated by using the MOA framework with
default settings (tree random seed 1, instance random seed 1, number of classes 2, number
of nominal attributes 5, number of numerical attributes 5, number of different values of
nominal attributes 5, maximal tree depth 5, first leaf level 3, leaf fraction 0.15).
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Random RBF Generator (denoted by rRBF) - generates a stream based on random radial
function. Those data were also generated with default settings of the MOA framework
(model random seed 1, instance random seed 1, number of classes 2, number of attributes
10, number of centroids 50). Each data element is a ten dimensional vector of real values
from [-1.0,1.0] and is assigned to one of two classes (class1 or class2).

SEA Generator (denoted by SEA) - the procedure for data generating is described in [43].
Obtained dataset was generated with the default settings of the MOA framework (function
1, instance random seed 1, noise percentage 10). Each data element was described by three
attributes taking values in the interval [0.0,10.0] and a class label (groupA or groupB).

Waveform Generator (denoted by WavGen) - this generator allows to analyze the prob-
lem of how to predict one of three waveform types. The data were generated with the
instance random seed 1 in MOA settings. The generated dataset consists of 21 numeric
attributes with values in [-5.0,5.0] and class value (classl, class2 or class3).

For the purpose of this experiments we use also three real datasets obtained from UCI Ma-
chine Learning Repository [30]:

Covertype Data Set - This dataset consists of data denoting the parameters of forest cover.
It was introduced to obtain a prediction of the cover type only from cartographic variables.
This dataset consists of 581 012 data elements, each of which is a 54 dimensional vector
(10 quantitative variables, 4 binary wilderness areas and 40 binary soil type variables).
Each data element is labeled by one of seven classes describing the types of forest cover.

Abalone Data Set - This dataset was created to predict the age of abalone from physical
measurements. Each data element in this set consists of the 8 attribute values (one nominal
and 7 numerical) and one integer value (class) describing the abalone age. There are 29
classes and 4 177 instances in this dataset.

Connect-4 Data Set - This dataset consists of data describing the possible moves in game
connect-4. Only not forced moves are taken into account. In this dataset there are 42
attributes with possible values ’x’, ’0’, ’b’ denoting ’player x has taken’, "player o has
taken’ and ’blank’, accordingly, where °x’ is the first player and ’o’ i the second player.
There are three class labels (win, loss, draw) denoting the outcome regarding the first
player. There are 67 557 instances in this dataset.

For comparison of the proposed method with known in the literature algorithms we used the
MOA framework. We obtained results for the following algorithms:

the Accuracy Updated Ensemble classifier (denoted by AUE),
the Accuracy Weighted Ensemble classifier (denoted by AWE),
the Hoeffding Tree algorithms (denoted by Hoef. Tree),

The Hoeffding Adaptive Tree (denoted by Hoef.Ada.Tree),

the Hoeffding Option Tree (denoted by Hoef.Opt.Tree),

the Naive Bayes incremental learner (denoted by Naive Bayes),

the Incremental On-line Bagging algorithm (denoted by Bagging),
7



- the Bagging Adwin algorithm (denoted by BagAdwin),
- the Incremental On-line Boosting (denoted by Boosting),
- the Weighted Majority algorithm (denoted by WMA).

For the purpose of simulations in our method we used the classic procedure of decision tree
construction to create ensemble components. Three most commonly known split measures were
used, that is Gini gain (based on Gini index), information gain (based on information entropy)
and split measure based on misclassification error. We use the following notation for different
settings of our method

e DEEAg - Gini gain,
e DEEAI - information gain,
o DEEAm - misclassification error.

We also investigated the performance of our new method with the use of chunks of different
sizes. In the sequel the chunk size is denoted by n, where n = 500 and n = 1000.

For the purpose of the experiments we used only decision trees as ensemble components.
We developed a new way to measure the usefulness of components (new method of assigning
weights to each component). Based on the observation of the decision trees performance we can
notice that different tree leaves have different accuracy. In previous approaches one weight was
calculated as a performance measure of the whole decision tree. Contrary to that we propose
to assign a weight to each leaf of the decision tree rather than one weight to the whole tree.
In this case we obtain a decision of the tree in the form of the weight calculated for a leaf to
which investigated data element was sorted. Then the ensemble outcome is a class for which the
highest value of a sum of outcomes (appropriate leaves weights) of all decision trees (ensemble
components) was obtained:

|

X = argCn;aX Z Lir0=ayW ([,(X)) (18)
€ j:1

where /;(X) denotes the leaf in 7; to which data element X was sorted, 7;(X) denotes the class
assigned to X by 7;, W(/;(X)) denotes the value of the weight for 7; in the leaf /;(X) and £ is a
set of all possible classes. The weight for each leaf is updated with time in the following form

Wil;(X) = a- W ([(X) + (1 —a) - decy, (19)

where ¢ is a time stamp, « € [0; 1) is a parameter set by the user and Acc, denotes the accuracy
of the investigated leaf obtained for current data chunk S, = S’. If the value of 4cc, in the
considered leaf is unknown, because no data elements were seen in it so far, then we take the
probability of random guess 1/|£| as a weight value where |£] is the number of classes. It is also
worth noticing that for @ = 0 the weight in a leaf is equal to its most recent accuracy value.

3.2. The performance analysis
First we will compare the performance of our method with the mentioned above algorithms.
The obtained results are presented in Tab. 1 and Tab. 2, where n = 500 and » = 1000, y, = 0.2,

a = 0.2 and ¥ = 0. The best obtained accuracies for a particular database is marked by coloring
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the background of a table cell. In the first table we obtained the results for all synthetic data
bases. As we can see our method gives better results with all investigated settings for the database
ArgGen. A better accuracy was also obtained for databases LED and WawGen. In the second
table (see tab. 2) we obtain the results for real data sets. For Covertype data all investigated
settings of DEEA give better results than obtained for other methods. For databases Abalone
and Connect-4 we obtained better accuracy for particular settings. Although it is surprising
that the MOA framework in three cases (see tab. 2) provided a very low performance for the
Hoef.Ada.Tree (6.17%), BagAdwin (6.36%) and Boosting (2.40%) algorithms, despite of many
trials, we include the results of these simulations for the sake of the experiment completeness.

We have investigated the performance of our method (DEEAg, n = 1000, @ = 0.2 and
Y = 0) for different values of parameter vy, (see tab. 3). As we can see in most cases along with
the growth of the parameter value the accuracy increases. This is the result of the ensemble size
growth. The number of components in some cases grows to a great size, e.g. for the Covertype
dataset with y, = 0.2, there are 54 trees stored in the ensemble. Moreover, let us notice that in
most cases the accuracy of the DEEA changes a little along with the growth of parameter ;.
However, the size of the ensemble grows very fast for most databases. In the case of the AgrGen
and Covertype databases even for y, = 0.01 the results are better compared to other algorithms.

Finally let us compare the performance of our method depending on the value of parameter
Y (see Theorem 2). For this experiment n = 1000, y, = 0.2 and @ = 0.2. The results are shown
in tab. 4. By analyzing the first two rows of this table we can observe, in most cases, the biggest
difference in performance of our algorithm. The change of ¥ from 0 to 0.1 causes the decrease of
accuracy (from 0.99% for the SEA dataset to 7.58% for the LED database). However, the most
significant change can be observed by analyzing the ensemble size. The use of the parameter ¥
causes a significant reduction of the number of ensemble components - for the Covertype dataset
the size decreases by 40 components and for the WavGen 32 components less were added to the
ensemble. Based on this experiment we can conclude that with the use of parameter ¥ we can
significantly reduce the ensemble size with some accuracy loss.

4. Conclusions

In the paper a new method for deciding if a new component should be added to the ensemble
was proposed. Two theorems were presented that give the foundations for this method. These
theorems allow determining, with defined by the user confidence, if by adding the additional
component we will obtain an increase of accuracy of the whole ensemble for the entire infinite
data stream. Moreover, a new method for increasing the ensemble performance, by assigning
new weights to the ensemble component, was proposed. The series of experiments shown that
obtained ensemble method gives satisfactory results and can outperform other methods existing
in the literature.
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Table 1: Accuracy of synthetic data

AgrGen | HypGen | LED RDT rRBF SEA WavGen
AUE 95,05% | 91,52% | 73,.96% | 98,61% | 95,57% | 89,92% | 85,57%
AWE 94,83% | 93,48% | 73,96% | 80,26% | 71,61% | 87,79% | 81,76%
Hoef.Tree | o 2004 | 00,10% | 74,11% | 96,78% | 92.65% | 89,70% | 84,69%
iﬁf’nee 94,77% | 90,16% | 74,09% | 97,39% | 92,87% | 89,71% | 84,72%
g;fgree 95,06% | 90,10% | 74,11% | 96,78% | 93,62% | 89,70% | 84.66%
g:;: 88,61% | 94,22% | 74,07% | 73,67% | 71,98% | 88.23% | 80,45%
Bageing | o5 5604 | 91,15% | 74,14% | 97.47% | 95.06% | 89.86% | 86,02%
BagAdwin | o5 570, | 91.30% | 73,99% | 97.47% | 95.06% | 89.86% | 86,00%
Boosting | o3 2301 | 90.45% | 73.99% | 98.81% | 94.89% | 89,69% | 85,04%
WMA 95,07% | 94,18% | 74,10% | 96,87% | 92,68% | 89,79% | 84.68%
fflEvog 97,22% | 88,28% | 71,07% | 90,71% | 89,53% | 89,22% | 87,26%
ffi)‘?)g 95,87% | 88,51% | 69.21% | 89,35% | 89,15% | 88,91% | 87,89%
1?511:6%2) 97,28% | 88,34% | 80,73% | 90,76% | 89,53% | 89,22% | 87,10%
ffi)Aoi 95,84% | 88,72% | 69.22% | 89,29% | 89,17% | 88,91% | 86,92%
fﬁ)‘ggl 96,74% | 89.96% | 77.82% | 88,71% | 92,60% | 89.46% | 89,52%
Ill)fs%gm 95,33% | 90,35% | 77.87% | 88,69% | 91,81% | 89,13% | 89,17%
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Table 2: Accuracy of real data

Covertype Abalone Connect
AUE 36,46% | 24.30% | 61,72%
AWE 36,46% | 24,90% | 43,93%
Hoef.Tree | (¢ oa0p | 23.99% | 72.94%
e | 617% | 23.82% | 60.28%
ggteffree 73.88% | 23,99% | 72,58%
g:;: 6543% | 2399% | 72,20%
Bagging | ) ogor | 24.44% | 74.74%
BagAdwin | ¢ 3¢, 24,76% | 55,62%
Boosting | ) 120, | 2.40% | 74.98%
WMA 23,99% | 23,99% | 72,63%
gfﬁ)Aoo 7973% | 20,90% | 72,49%
DPEE | 8060% | 2077% | 74.06%
DEE | 8Ls1% | 27.20% | 71.96%
DEEAL 8314% | 35.63% | 75.65%
Efﬁ)‘ggn 81,81% | 24.93% | 72,82%
Ill)fs%gm 81,58% | 29.21% | 74,82%
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Table 3: Dependence of the performance on the value of y;

0,01 0,05 0,1 0,15 0,2
b%) Accuracy Zéiii Accuracy (Téf:rﬁ Accuracy Z;Zist Accuracy cT;iZSt Accuracy ;r;elii

AgrGen 95,32% 2 96,18% 3 96,54% 4 96,98% 5 97,22% 6
HypGen 86,12% 6 87,33% 10 87,87% 15 87,89% 17 88,28% 24
LED 69,58% 4 70,06% 3 69,80% 4 70,65% 5 71,07% 7
RDT 89,83% 4 89,91% 5 90,28% 8 90,73% 8 90,71% 11
rRBF 88,87% 5 89,06% 7 89,37% 9 89,71% 13 89,53% 16
SEA 88,23% 2 89,12% 3 89,37% 4 89,24% 4 89,22% 5
WavGen 85,44% 10 86,05% 16 87,64% 23 87,57% 31 87,26% 37
Covertype | 81,81% 20 80,15% 31 79,52% 40 80,10% 50 79,73% 54
Abalone 19,83% 1 19,83% 1 19,83% 1 20,90% 2 20,90% 2
Connect 72,07% 13 72,87% 15 72,25% 18 72,53% 20 72,49% 20
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Table 4: Dependence of the performance on the value of ¥

AgrGen HypGen LED RDT rRBF
g Accuracy ;r;iist Accuracy Z(r“elist Accuracy ;F(r)iist Accuracy Z(iiist Accuracy Z(iiflst
0 97,22% 6 88,28% 24 71,07% 7 90,71% 11 89,53% 16
0,1 91,73% 1 85,13% 4 63,69% 2 87,64% 2 87,13% 2
0,15 | 91,73% 1 82,80% 2 63,69% 2 87,64% 2 87,13% 2
0,2 91,73% 1 82,80% 2 67,72% 2 87,64% 2 87,13% 2
0,25 | 91,73% 1 82,80% 2 56,95% 2 85,42% 2 78,99% 1
0,3 91,73% 1 81,61% 2 45,34% 1 75,99% 1 78,99% 1
0,35 | 91,73% 1 70,52% 1 45,34% 1 75,99% 1 78,99% 1
0,4 91,73% 1 70,52% 1 45,34% 1 75,99% 1 78,99% 1
0,45 | 91,73% 1 70,52% 1 45,34% 1 75,99% 1 78,99% 1
0,5 91,73% 1 70,52% 1 45,34% 1 75,99% 1 78,99% 1
SEA WavGen Covertype Abalone Connect

b4 Accuracy E;lelist Accuracy 'C[(r)zel:lst Accuracy 'C[crﬂelist Accuracy I;elist Accuracy Z(i:li

0 89,22% 5 87,26% 37 79,73% 54 20,90% 2 72,49% 20
0,1 88,23% 2 83,01% 5 77,87% 14 19,83% 1 71,17% 7
0,15 | 88,23% 2 81,00% 4 75,03% 11 19,83% 1 71,10% 5
0,2 88,23% 2 78,48% 3 73,60% 7 19,83% 1 69,65% 4
0,25 | 78,20% 1 76,33% 2 73,60% 7 19,83% 1 70,11% 3
0,3 78,20% 1 76,33% 2 70,51% 7 19,83% 1 70,11% 3
0,35 | 78,20% 1 76,33% 2 68,45% 5 19,83% 1 67,35% 3
0,4 78,20% 1 73,22% 2 68,45% 5 19,83% 1 65,71% 2
0,45 | 78,20% 1 61,24% 1 67,31% 5 19,83% 1 65,71% 2
0,5 78,20% 1 61,24% 1 67,31% 4 19,83% 1 65,71% 2
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