
IE
EE

Pr
oo

f

1

A New Method for Data Stream Mining Based
on the Misclassification Error

Leszek Rutkowski, Fellow, IEEE, Maciej Jaworski, Lena Pietruczuk, and Piotr Duda

Abstract— In this paper, a new method for constructing
decision trees for stream data is proposed. First a new split-
ting criterion based on the misclassification error is derived.
A theorem is proven showing that the best attribute computed
in considered node according to the available data sample is
the same, with some high probability, as the attribute derived
from the whole infinite data stream. Next this result is combined
with the splitting criterion based on the Gini index. It is shown
that such combination provides the highest accuracy among all
studied algorithms.

Index Terms— Classification, data stream, decision trees,
impurity measure, splitting criterion.

I. INTRODUCTION

A. Motivation and Results

In recent years, the amount of data that needs to be analyzed
is growing very fast. Potentially unlimited number of data is
the cause of creation of a new field of research called data
stream mining. This area is developing very fast and attracting
a great number of authors who propose a variety of methods
and algorithms [1]–[17]. By analyzing stream of data elements,
one has to face new difficulties, therefore standard approach
to the problem of data mining cannot be applied. One of
the difficulties is the need of on-the-spot data analysis. This
results from the fact that all data cannot be stored due to
the limitation of memory. The second problem is the rate of
incoming data. The algorithm used for data stream analysis
should be fast to keep up with the incoming data. The next
problem is the occurrence of concept drift [18]–[24]. Concept
drift is the term that describes the change in data distribution
or the meaning of data, e.g., previously relevant data in time
can become irrelevant or unneeded. Therefore, the algorithm
applied to this problem should evolve in time according to
changing circumstances.

Manuscript received June 14, 2013; revised February 19, 2014 and June 16,
2014; accepted June 16, 2014. This work was supported by the Foundation
for Polish Science Team Programme through the European Union, European
Regional Development Fund, Operational Programme Innovative Economy
2007-2013.

L. Rutkowski is with the Institute of Computational Intelligence,
Czestochowa University of Technology, Czestochowa 42-200, Poland, and
also with the Information Technology Institute, Academy of Social Sciences,
Łódź 90-113, Poland (e-mail: leszek.rutkowski@iisi.pcz.pl).

M. Jaworski, L. Pietruczuk, and P. Duda are with the Institute of Com-
putational Intelligence, Czestochowa University of Technology, Czestochowa
42-200, Poland, (e-mail: maciej.jaworski@iisi.pcz.pl; lena.pietruczuk@
iisi.pcz.pl; piotr.duda@iisi.pcz.pl).

Digital Object Identifier 10.1109/TNNLS.2014.2333557

One of the most important techniques used in data mining is
the data classification. Let us assume that the data elements are
described by D attributes. Each attribute can be either nominal
or numerical. If the i th attribute is nominal then the number of
possible values is finite and equal to vi . Moreover, to each data
element, a class is assigned. The number of different classes
is denoted by K . The aim of the classification is to construct
a function called the classifier, based on the training data set
of elements. The classifier maps the set of values of attributes
into the set of classes. It is further used to classify unlabeled
data elements. There exists a wide variety of methods used for
data classification. The most popular are neural networks [25],
k-nearest neighbors [26], and decision trees [27]–[29]. The
last one is the main subject of this paper. Decision tree
consists of nodes and leaves. Each node is split according to
some attribute into its children (nodes or leaves). Each child
corresponds to one value of the attribute (in case of nonbinary
tree) or to the subset of possible values (if the tree is binary).
Each split is associated with the partition of the training data
set into its subsets. Splits should be made in such a way that
the resulting subsets (partition) are as highly pure as possible.
At the beginning of the decision tree construction, it is quite
likely that the partition will be impure (e.g., it may contain a
collection of data elements from different classes rather than
from a single class) [30]. The degree of purity of the parti-
tion can be measured quantitatively, e.g., by the information
entropy [31] or the Gini index [32]. In the high levels of the
tree, the distribution of classes in corresponding data subsets
is highly dominated by elements of only one class. In this
case, the node does not need to be split and becomes a leaf.
Leaves are used to assign a class to unlabeled data elements.

In the decision tree construction process, the main task is to
determine, which attribute is the best to split the considered
node. Let S denotes the set of data elements in this node,
n(S) is the cardinality of S and let nk(S) be the number
of elements of set S from the kth class. The choice of the
attribute to split the considered node proceeds as follows. For
each attribute indexed by i , i = 1, . . . , D, the data set S
is divided into some disjoint Q subsets Si

q , q = 1, . . . , Q,
where Q = 2 for binary trees and Q = vi for nonbinary
trees. The quality of the split is evaluated according to
a split measure function. In the majority of decision tree
algorithms, this function is defined as the reduction of some
impurity measure (or equivalently the gain of some infor-
mation measure). Let as denote the impurity measure of set
S by g(S). Then, the split measure function can be

2162-237X © 2014 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

ACCEPTED FOR PUBLICATION IN IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL.26, NO.5, PP.1048-1059, MAY 2015

mailto:lena.pietruczuk@iisi.pcz.pl
mailto:lena.pietruczuk@iisi.pcz.pl

IE
EE

Pr
oo

f

2

expressed as

�gi(S) = g(S) −
Q∑

q=1

n
(
Si

q

)

n(S)
g
(
Si

q

)
. (1)

The attribute that provides the highest value of the split
measure function is used to split the considered node.

Any impurity measure g(S) has to satisfy at least two of
the following conditions.

1) If the set S is dominated by elements of one class, i.e.,
∃k0∈{1,...,K }nk0 (S) = n(S), then g(S) = 0 (the set S is
maximally pure).

2) The function g(S) is maximized if each class
is represented by the same number of elements,
i.e., ∀k∈{1,...,K }nk(S) = n(S)/K (the set S is maximally
mixed).

For convenience, one can define the fraction of elements
from the kth class in set S as a ratio between nk(S) and n(S)

pk(S) = nk(S)

n(S)
. (2)

In the literature, several forms of impurity measures g
have been proposed, e.g., information entropy (in the ID3
algorithm [31]) or Gini index (in the CART algorithm [32]).
Using the notation of fractions pk , the information entropy is
given by

g(S) = −
K∑

k=1

pk(S) log2 pk(S) (3)

whereas the Gini index is expressed by the following:

g(S) = 1 −
K∑

k=1

(pk(S))2. (4)

There exists another impurity measure, which is rarely
mentioned in literature. It is called the misclassification error
and is given in very simple form

g(S) = 1 − max
k∈{1,...,K }{pk(S)}. (5)

It is easy to check that (3), (4), and (5) satisfy conditions
1) and 2).

The challenge and research problem in stream data mining
is to show that, with high probability, the attribute chosen
using n(S) samples and one of (3)–(5) impurity measures is
the same as that chosen using infinite examples. In the last
decade, the commonly used tool to tackle this problem was the
Hoeffding bound [33]. In [34] and [35], we have shown that
the Hoeffding bound is a wrong tool and we have proved sev-
eral theorems showing a correct solution for impurity measures
(3) and (4). To our best knowledge, impurity measure (5) has
never been applied for stream data mining. Recently, we have
observed that using impurity measure (5) is very beneficial in
stream data mining at the beginning (lower level of the tree) of
decision tree construction, and next, at higher levels, impurity
measures (3) or (4) perform better. This observation inspired
us to develop a hybrid algorithm presented in this paper.
To implement this idea, we should derive a splitting criterion

for impurity measure (5) and next to combine it with splitting
criteria based on (3) or (4).

The main contribution and novelty of this paper can be
summarized as follows.

1) A new splitting criterion based on the misclassification
error (5) is proposed in Theorem 1. The criterion has
strong mathematical foundations and allows determining
the optimal attribute to split the node of the tree.
The criterion guarantees, with high probability set by the
user, that the attribute chosen on a basis of a finite
number of data elements is the same as if it were for
the case of infinite data set (e.g., data stream).
The online tree construction procedure with the appli-
cation of the proposed criterion is denoted further in
the text as the mDT algorithm. The performance of the
mDT algorithm was compared with the online tree for
which the splitting criterion is based on the Gini index
(the gDT algorithm). The justification for the gDT
algorithm was formerly presented in [36]. It should be
noted that in [36], the gDT algorithm was introduced
under the name dsCART.

2) Combining advantages of both misclassification error
(5) and Gini index (4), the new splitting criterion is
proposed. The algorithm based on this hybrid criterion is
called the hDT algorithm. The new algorithm provided
the highest accuracy among all considered algorithms.

3) The experimental results are performed on 12 synthetic
data concepts and two well known in literature real
data sets. The mDT algorithm is compared with the
static decision tree based on the misclassification error
impurity measure (the smDT algorithm). Moreover, the
performance of the mDT, gDT, and hDT algorithms is
precisely examined.

It should be emphasized that our main result (Theorem 1
in Section II) is applicable to solve problems with concept
drift. More specifically, our result should replace Hoeffding’s
bound used incorrectly in algorithms like the concept-adapting
very fast decision trees (CVFDTs) [19] or Hoeffding option
trees (HOTs) [33], [37]. We stress that the idea of the CVFDT
and HOT algorithms is correct, however, authors of both
algorithms incorrectly used Hoeffding’s bound in their papers.
Our result can be combined with those algorithms, replacing
Hoeffding’s bound by appropriate splitting criteria presented
in this paper. Moreover, decision trees based on the proposed
splitting criteria can be used as classifiers in already known
ensemble algorithms [2].

B. Background of the Problem

The ID3 and the CART algorithms mentioned previously
are designed for static data, in which the training data set is
of a fixed size. The same training data set (or its appropriate
subsets) is used to determine splitting attribute in all nodes in
the tree. This approach is not applicable to large data sets
or data streams, for which special one-pass algorithms are
needed. In particular, the choice of the splitting attribute in
different nodes has to be made on the basis of different training
data sets. However, in the case of large data sets (or data

ACCEPTED FOR PUBLICATION IN IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL.26, NO.5, PP.1048-1059, MAY 2015

IE
EE

Pr
oo

f

3

streams without concept drift), these different training sets still
belong to the same probability distribution. The problem is to
decide if the number of data elements n(S), collected so far
in considered node, is enough to choose the attribute with the
highest value of split measure function as the best attribute,
i.e., as the splitting attribute. In general, the more data elements
are collected, the more reliable the result is. The most trivial
solution, taken directly from the static data set algorithms, is
to fix some threshold number n0.

A much better solution to the problem was proposed by
the authors of the very fast decision tree (VFDT) algorithm
in [33]. They claimed that in the ideal case the choice of the
splitting attribute in a node should be made on basis of infinite
set S∞ of data examples (n(S) = n(S∞) = ∞). This means
that for every attribute the split measure function (1) should
be calculated as �gi(S∞), where i = 1, . . . , D is the index
of the attribute. Obviously it is not possible. Therefore, the
number n(S) should be large enough to say that

arg max
i

{�gi(S)} = arg max
i

{�gi(S∞)} (6)

with high probability 1 − δ∗ = (1 − δ)D−1 set by the user. Let
x denotes the index of the attribute with the highest value of
split measure function, and y with the second highest value.
If the following inequality is satisfied:

�gx(S) − �gy(S) > ε(n(S), δ) (7)

then x = arg maxi {�gi(S∞)} with probability 1 − δ∗ and the
split is made with respect to the x th attribute. In [33], the
function ε(n(S), δ) was derived using the Hoeffding bound,
obtaining the following general form:

ε(n(S), δ) = R

√
ln(1/δ)

2n(S)
(8)

where R is a constant. Therefore, if the difference between
split measure function for x th and yth attributes is large, only
a small amount of data n(S) is needed to choose x th attribute
as the splitting one. On the other hand, if the difference is
small, a very large number n(S) may be needed.

Although the VFDT algorithm based on the Hoeffding trees
gives very satisfactory practical results, it was pointed out
in [34] that it was wrongly mathematically justified. The
Hoeffding bound is applicable only for the sum or average
of random variables, whereas the information gain or Gini
gain is nonlinear functions, which cannot be expressed in
such a simple form. Rutkowski et al. [34] proposed to use
McDiarmid’s bound instead of Hoeffding’s bound to derive the
form of function ε(n(S), δ). McDiarmid’s bound is applied to
independent observations taken from data streams, however,
unlike Hoeffding’s bound, it is applicable for nonlinear func-
tions. For Gini index, they obtained result similar to (8), with
higher value of constant R. For information entropy, the result
was much worse: the convergence of ε(n(S), δ) to zero was
in the form O(log2 n(S)/

√
n(S)).

Rutkowski et al. [35], [36] proposed another method of
deriving the function ε(n(S), δ) for information gain and
Gini gain, respectively. In this method, the mentioned split
measure functions were linearized with the application of

Taylor’s theorem and then the Gaussian approximation was
used to obtain the final result. The convergence of ε(n(S), δ)
was, as in the case of Hoeffding bound, in the form
O(1/

√
n(S)). Nevertheless, in case of information gain, the

method was applicable only for two-class problem. For Gini
gain, the proportionality coefficient was dependent on the
number of classes K and reached large values.

The name of the Hoeffding tree algorithm proposed in [33],
stems from the fact that authors tried to apply the Hoeffding
bound to derive a splitting criterion. However, as it was
mentioned previously, the Hoeffding bound is not applicable
for nonlinear split measures. Nonetheless, the main idea of
constructing such online trees [33] is reasonable if correct
splitting criterion [34]–[36] replaces the Hoeffding bound.
To avoid any misunderstandings in this paper, the name online
trees will denote the Hoeffding trees without any specified
splitting criterion.

Summarizing, the forms of function ε(n(S), δ) existing
in literature either have wrong mathematical background or
require impractically high number of n(S) to reach relatively
low value and allow to split the node quite fast. Both difficul-
ties seem to arise from the nonlinearity of existing impurity
measures. Therefore, searching for a new simple impurity
measure could be a key to solve the problem and the challenge
to be addressed in this paper.

The rest of this paper is organized as follows. In Section II,
a new splitting criterion based on the misclassification error is
proposed. The description of stream data mining algorithms is
given in Section III. Section IV presents the results obtained
in the simulations. In Section V, the conclusion of this paper
is drawn.

II. NEW SPLITTING CRITERION BASED ON THE

MISCLASSIFICATION ERROR

A. Main Result

The misclassification error impurity measure, according
to (5), can be expressed as follows:

g(S) = 1 − maxk∈{1,...,K }{nk(S)}
n(S)

(9)

which is called the misclassification error. It is easy to check
that (9) satisfies conditions 1) and 2). The misclassification
error is the basis of a split measure function, called further
the accuracy gain.

Theorem 1: Let S be the finite set of data elements and let
g(S) denote the misclassification error of S. If, considering (1),
the following condition is satisfied:

�gi(S) − �g j (S) > z(1−δ)

√
1

2n(S)
(10)

where z(1−δ) is the (1 − δ) quantile of the standard normal
distribution N (0, 1), then with probability (1 − δ) the i th
attribute would give higher value of the accuracy gain than
the j th attribute for the infinite data set S∞ from the same
probability distribution as S. Moreover, if the i th attribute is
with the highest value of accuracy gain in set S and the j th
attribute is the one with the second highest value, then with

ACCEPTED FOR PUBLICATION IN IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL.26, NO.5, PP.1048-1059, MAY 2015

IE
EE

Pr
oo

f

4

probability at least 1 − δ∗ the i th attribute would maximize
the value of accuracy gain in set S∞.

Proof: The set S is split into subsets Si
q , q = 1, . . . , Q,

according to some attribute i . Combining (1) with (9), one
obtains the form of the accuracy gain function

�gi(S) = 1 − maxk∈{1,...,K }
{
nk(S)

}

n(S)

−
Q∑

q=1

n(Si
q)

n(S)

(
1 − maxk∈{1,...,K }

{
nk(Si

q)
}

n
(
Si

q

)
)

(11)

which can be further simplified to the following form:

�gi(S) =
(∑Q

q=1 maxk∈{1,...,K }
{
nk(Si

q)
})

n(S)

− maxk∈{1,...,K }
{
nk(S)

}

n(S)
. (12)

Note that the term maxk∈{1,...,K }{nk(S)} is the same for all
attributes. Since only the differences between split measure
function values are important, the mentioned term can be
neglected. Let us denote

�g̃i(S) =
∑Q

q=1 maxk∈{1,...,K }
{
nk(Si

q)
}

n(S)
. (13)

Note that from (12) and (13), the following obvious equation
can be derived:

�g̃i (S) − �g̃ j (S) = �gi(S) − �g j (S). (14)

The term maxk∈{1,...,K }{nk(Si
q)} denotes the number of ele-

ments reaching the qth leaf belonging to the majority class in
this leaf. On the other hand, the simplest method of assigning
a class to an unlabeled data element is to assign the majority
class of the leaf. Therefore, the term maxk∈{1,...,K }{nk(Si

q)}
is nothing else but the number of correctly classified data
elements of set S, which would be sorted down to the qth leaf.
Moreover, the sum in the nominator of (13) is the total number
of correctly classified data elements of set S, if the split was
made with respect to the i th attribute. As a result, (13) is
the accuracy obtained for elements of set S, if the split was
made with respect to the i th attribute. Hence, the choice of the
attribute that maximizes the value of (13) provides not only
the maximum loss of some impurity measure [defined by (9)],
but it also guarantees the maximum gain of the accuracy of
the tree. Let s j , j = 1, . . . , n(S), denote the elements of the
set S. Let us define a function Pi (s), which is equal to one
if the element s would be correctly classified (after splitting
the considered node with respect to the i th attribute) and zero
otherwise. It is obvious that Pi (s) is a random variable from
the binomial distribution with some unknown expected value
μi and variance μi (1 − μi). Now, (13) can be expressed in
the following way:

�g̃i(S) =
∑n(S)

j=1 Pi (s j)

n(S)
. (15)

Obviously, values of (15) tend to μi as size of set S tends to
infinity. Under assumption that the set S is a random sample

of the whole data stream (or the whole large data set), one
can say that μi is the value of (15), which would be obtained
for the infinite set of elements, i.e., μi = �g̃i(S∞). Hence,
(15) [and (13)] is the estimator of �g̃i (S∞). If n(S) is big
enough, the probability distribution of estimator (15) can be
approximated by the following normal distribution:

�g̃i (S) −→ N

(
�g̃i(S∞),

μi (1 − μi)

n(S)

)
. (16)

Hence, the difference �g̃i(S)−�g̃ j (S) also belongs to the
normal distribution

�g̃i(S)−�g̃ j (S) −→ N

(
�g̃i(S∞)−�g̃ j(S∞),

μi (1−μi)+μ j (1−μ j)

n(S)

)
. (17)

From the properties of the normal distribution [38], one can
conclude that with probability 1 − δ, the following inequality
is satisfied:
�g̃i(S) − �g̃ j (S) < �g̃i(S∞) − �g̃ j (S∞)

+ z(1−δ)

√
μi (1 − μi) + μ j (1 − μ j)√

n(S)
(18)

where z(1−δ) is the (1 − δ) quantile of the standard normal
distribution N (0, 1). From (18), the following statement can
be derived:

If

�g̃i(S) − �g̃ j (S) > z(1−δ)

√
μi (1 − μi) + μ j (1 − μ j)√

n(S)
(19)

then, with probability 1 − δ, the following inequality is true:
�g̃i(S∞) − �g̃ j (S∞) > 0 (20)

i.e., with probability 1 − δ, the i th attribute would provide
higher value of the accuracy than the j th attribute, if the data
set was of infinite size. The value of μi ≡ �g̃i(S∞) [and
μ j ≡ �g̃ j (S∞)] is not known, but it is within the interval
[0; 1]. Hence, the term on the right side of (19) can be bounded
by

z(1−δ)

√
μi (1 − μi) + μ j (1 − μ j)√

n(S)
≤ z(1−δ)

√
1

2n(S)
. (21)

Therefore, if (10) is satisfied then, in view of (14) and (21),
(19) also holds. As a result, (20) is satisfied with probability
1 − δ. Hence, one can say that (10) is enough to say that with
probability 1 − δ the i th attribute would give higher value
of the accuracy than the j th attribute, if the data set was of
infinite size. Moreover, if i is the index of the attribute with
the highest value of accuracy and j is the index of the one
with the second highest value, then with probability 1−δ∗ the
i th attribute would maximize the value of accuracy if the data
set were of infinite size. Then, the considered node is split
with respect to the i th attribute.

ACCEPTED FOR PUBLICATION IN IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL.26, NO.5, PP.1048-1059, MAY 2015

IE
EE

Pr
oo

f

5

Example 1: Let us assume that there are n(S) = 10 000
data elements in the considered tree node. Let x and y be the
indices of attributes with the highest values of accuracy gain
function. Let us assume that the value of �gx(S) − �gy(S)
is equal to 0.01161. If the level of confidence is set to
1 − α = 0.95, then z(1−α), read from the mathematical table
of quantiles of the standard normal distribution, is equal to
1.644854 and one obtains

z(1−α)
1√

2n(S)
= 0.011631. (22)

Therefore, (10) is not satisfied and we cannot say that the
attribute with index x is better than the one with index y.
Let us assume now that new 100 data elements arrived to the
considered tree node. The total number of elements n(S) in
this node equals 10 100. Let us assume that the new value of
�gx(S) − �gy(S) is 0.116. For the current value of n, we
have

z(1−α)
1√

2n(S)
= 0.011573. (23)

This time (10) is satisfied. Therefore, with the 0.95 level of
confidence, we are allowed to say that attribute with index x
is better than attribute with index y. The considered tree node
is divided with respect to the x th attribute.

Example 2: Inequality (10) can be transformed as follows:

n(S) >
(z(1−α))

2

2(�gx(S) − �gy(S))2 . (24)

The above inequality is an alternative way for determining
whether to split the considered node or not. If the current
number of elements satisfies (24), the node is divided with
respect to the x th attribute. Let us assume that �gx(S) −
�gy(S) = 0.0116. The values of z(1−α) = 1.644854 are the
same as in Example 1. Then, the term on the right side of (24)
equals

(z(1−α))
2

2(�gx(S) − �gy(S))2 = 10053.3. (25)

Therefore, if n(S) is greater or equal to 10 054 elements,
the tree node is divided with respect to attribute with index x .

B. Hoeffding’s Bound Analysis

As it was mentioned previously, Domingos and Hulten [33]
claimed that the bound for the difference of split measure
functions for two attributes should be given by (8). We will
now show that such an approach is incorrect. Let us assume
that the user demands that the best attribute computed in
considered node according to the available data sample is
the same, with probability 1 − δ∗, as the attribute derived
from the whole infinite data stream (6). We will demonstrate
that Hoeffding’s bound (8) does not ensure obtaining the
required probability 1 − δ. Domingos and Hulten [33] stated
that the constant R in (8) is equal to the range of all possible
values of the considered split measure function. For example,
the information gain takes values in the interval [0; log2 K],
therefore R = log2 K . The authors did not consider the
case of split measure based on the misclassifiation error.

The set of possible values of this measure is [0; 1 − 1/K],
i.e., R = 1 − 1/K . Domingos and Hulten [33] claim that the
bound (8) is valid for each possible probability distribution.
Therefore, in the following analysis, a very simple two-class
problem is considered (K = 2 and as a result the value of
constant R is equal to 0.5). Data elements are characterized by
two binary attributes (D = 2). Moreover, each combination of
attributes values and class in data element is equally probable.
Let SN denote a set of N data elements taken randomly from
the considered distribution. For this simple probability distri-
bution, it is obvious that the difference between split measure
values for the two attributes, i.e., �g0(SN) − �g1(SN) (11),
should be equal to 0 (no attribute should be chosen to split
the considered node). The difference �g0(SN) − �g1(SN) is
allowed to exceed bound (8) only in the fraction δ of all
cases of SN [obviously the value of the bound depends on
δ according to (8)]. To prove that the bound derived by the
Hoeffding inequality is incorrect, it is enough to show that the
actual probability, denoted by δ1, that �g0(SN) − �g1(SN)
exceeds bound (8) is greater than δ at least for one particular
value of δ and one particular number of data elements N . Let
VN denote the set of all possible sets SN . Since there are two
binary attributes and each element can belong to one of the
two classes, the cardinality of set VN is equal to 23N . For
small N , the probability δ1 can be calculated analytically

δ1 = |V ′
N |

|VN | (26)

where V ′
N = {SN ∈ VN : �g0(SN) − �g1(SN) > ε(N, δ)}

and | · | denotes the cardinality. For example for N = 4
and δ = 0.01, the actual probability δ1 is equal to 0.0176.
The computations were performed for N = 2, . . . , 8 and
for two values of δ: 0.01 and 0.001. Unfortunately, for large
numbers of data elements (such as N ∈ {100, 200, 1000}), the
analytical calculations are impossible to carry out because of
extremely large number of combinations 23N would have to be
considered. Therefore, the Monte Carlo computer simulations
were conducted to approximate the probability δ1. For each
value of N and δ, the set SN was randomly generated
104 times. For each generated set, it was checked if the dif-
ference �g0(SN) − �g1(SN) exceeds the bound. The fraction
of positive cases is denoted by δ̂1. The experiment was run
for N ∈ {2, 3, 4, 5, 6, 7, 8, 100, 200, 1000}.

Analogously, the theoretical analysis and Monte Carlo sim-
ulations were performed for the approach proposed in this
paper, for the same values of N and δ. Results are presented
in Table I.

The results collected in the table were obtained for two
different values of δ (first column) and for eleven different
numbers of data elements N (second column). In the third
column, the probability δ1 of exceeding the Hoeffding bound,
calculated by (26), is presented. The fourth column presents
the values δ̂1, which are the Monte Carlo approximations of δ1.
Analogously, the last two columns show the values of δ1 and δ̂1
with the Hoeffding bound replaced by the bound proposed in
this paper (10)—based on the Gaussian approximation.

As can be seen, the actual probability δ1 that the difference
�g0(SN) − �g1(SN) exceeds the Hoeffding bound is often

ACCEPTED FOR PUBLICATION IN IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL.26, NO.5, PP.1048-1059, MAY 2015

IE
EE

Pr
oo

f

6

TABLE I

greater than the assumed probability δ. The theoretical results
are confirmed by the computational simulations. It should be
noted that the disagreement between δ and δ1 occurs not only
in the case of small N . It also holds for quite large values
of N , what may have a practical meaning. On the other side,
the bound presented in this paper, i.e., (10) in Theorem 1,
guarantees that the wrong decision is never made in the case
of N = 2, . . . , 8. For δ = 0.01 and N ∈ {100, 200, 1000}, the
values of δ̂1 are only a bit greater than 0, however, it is still
much less than the assumed probability δ.

III. HYBRID ALGORITHM FOR DESIGNING

DECISIONS TREES

As it was already mentioned in the introduction, all the
algorithms considered in this paper (i.e., mDT, gDT, and
hDT) are based on the idea presented in [33]. This idea is
summarized as an online tree algorithm that pseudocode is
shown in Fig. 1. The algorithm produces binary decision trees.

Let nk
i j (S) denote the number of data elements (in set S)

from class k, with the j th value of i th attribute. The set of
numbers nk

i j (S), i = 1, . . . , D, j = 1, . . . , vi , k = 1, . . . , K
is also called the sufficient statistics of set S. The algorithm
starts with one single node—the root. The sufficient statistics
in the root are all set to zero. Then, the tree is developed using
subsequent data elements from the stream. Each data element s
is sorted through the tree, according to the values of attributes
and the current structure of the tree. Element s finally reaches
a leaf L p . The sufficient statistics in leaf L p are updated. Let
Sp denote the set of data elements collected so far in leaf L p ,
ji,s denote the value of the i th attribute in data element s,
and ks denote the class of element s. The update of sufficient
statistics is made in the following manner:

∀i∈{1,...,D} nks
i ji,s

(Sp) = nks
i ji,s

(Sp) + 1. (27)

Next, values of the split measure function �gi(Sp) are
calculated for each attribute, i = 1, . . . , D. It should be noted
that each value �gi(Sp) is calculated with respect to the

Fig. 1. Block diagram of the online tree algorithm.

optimal partition of the set Ai of all possible values of the
i th attribute into two disjoint subsets AL

i and AR
i = Ai\AL

i .
The attributes with the highest (imax) and the second highest
(imax 2) values of the split measure function are found. The
difference �gimax(Sp) − �gimax 2(Sp) is calculated and the
splitting criterion is checked. If the result of the test is positive,
the leaf L p becomes a node and is split into two children
nodes (leaves). One of them corresponds to the subset AL

imax
of values of the i th attribute and the other one corresponds
to the complement of set AL

imax
. The sufficient statistics in

both children nodes are initially set to zero. Then, the whole
procedure is performed for the next data element taken from
the stream.

The only difference between the mDT, gDT, and hDT
algorithms lies in the splitting criterion. The criterion for the
mDT algorithm is justified by Theorem 1 and states as follows:

�gi(S) − �g j (S) > z(1−δ)

√
1

2n(S)
(28)

where z(1−δ) is the (1 − δ) quantile of the standard normal
distribution N (0, 1) and g(S) denotes the misclassification
error for set S. The misclassification error is an impurity
measure rarely mentioned in literature. For static decision
trees, this measure provides much worse results than other
impurity measures, e.g., Gini index that is used in the gDT
algorithm. The splitting criterion for the gDT algorithm is
introduced in [36] and states as follows:

�gi(S) − �g j (S) > z(1−δ)

√
10K 2 − 16K + 8

n(S)
(29)

where g(S) denotes the Gini index for set S. The main
drawback of misclassification error is the fact that it allows
a reasonable split only if it guarantees an increase of accuracy
(in other cases it either makes a split according to a randomly
chosen attribute or it does not make a split at all—depending

ACCEPTED FOR PUBLICATION IN IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL.26, NO.5, PP.1048-1059, MAY 2015

IE
EE

Pr
oo

f

7

on particular implementation of the algorithm). In opposite,
Gini index always provides a split that produces better orga-
nized subsets of data, even if this split does not improve the
accuracy. As a result, it prepares data for reasonable splits of
nodes in higher levels of the tree. Although the properties of
misclassification error are undesirable in static decision trees,
it has other advantages that can be suitable for online tree
construction. In most cases, the mDT algorithm needs much
less data to determine a split comparing with online trees based
on other impurity measures.

As it is presented in the section of experimental results,
the advantage of misclassification error discussed above is
particularly beneficial at the beginning stages of online tree
construction process. However, at higher levels of the tree data
elements of one class predominate significantly over the rest
of elements. In this case, no attribute provides the increase of
accuracy. Then, the mDT algorithm cannot make a split and
the further growth of the tree is inhibited. Therefore, for large
number of processed data elements, the accuracy obtained for
the gDT algorithm is higher than for the mDT algorithm.

The observation that the mDT algorithm gives higher accu-
racy at the beginning stages and the gDT algorithm performs
better when the tree became more complex suggests combin-
ing these two methods. Therefore, the hDT algorithm has been
proposed in this paper. The hDT algorithm produces the online
tree with the splitting criterion defined as a disjunction of
(28) and (29).

In summary, three algorithms are studied in this paper.

1) mDT—an online tree algorithm where splitting criterion
is satisfied when (28) is satisfied.

2) gDT—an online tree algorithm where splitting criterion
is satisfied when (29) is satisfied.

3) hDT—an online tree algorithm where splitting criterion
is satisfied when at least one of (28) and (29) is satisfied.

The performance of these algorithms will be examined and
discussed in the next section.

IV. SIMULATION RESULTS

A. Data Preparation

In this section, the performance of the proposed method is
discussed and compared with the gDT algorithm as well as
with the static decision tree algorithm based on the misclassi-
fication error. Synthetic and real data were used.

Synthetic data were generated on a basis of synthetic
decision trees. These synthetic trees were constructed in the
same way, as described in [33]. At each level of the tree,
after the first dmin levels, each node is replaced by a leaf
with probability ω. The higher value of parameter ω implicates
lower complexity of the tree. To the rest of nodes, a splitting
attribute is randomly assigned; it has to be an attribute that has
not already occurred in the path from the root to the considered
node. The maximum depth of the synthetic tree is dmax
(at this level all nodes are replaced by leaves). After the whole
tree is constructed, to each leaf, a class is randomly assigned.
Each synthetic tree represents a different data concept, which
is a particular distribution of attributes values and classes.
In brief, data concept determines the correlations between

the attributes and classes, i.e., it is a particular classification
problem. For the purpose of the following simulations, twelve
synthetic trees were generated (all of them with D = 30 binary
attributes, dmin = 3 and dmax = 18). Four different values of
ω were considered: 0.1, 0.15, 0.2, and 0.25. For each of these
values, three synthetic trees were generated. These twelve
synthetic trees provided twelve different data concepts. For
each concept, a testing data set consisting of 10 000 elements
was generated using the corresponding synthetic tree. Hence,
there are twelve testing data sets, one for each data concept.
Each testing data set is generated only once and is used
to evaluate the accuracy of decision trees at every stage of
their development. In the simulations presented below, for any
training data set size n and any value of parameter δ one
obtains twelve different decision trees and, as a result, twelve
values of classification accuracy (one for each synthetic data
concept). The final result of accuracy for particular n and δ
was calculated as the average over all twelve values.

In addition, two real data sets were used in the experiments,
both taken from the UCI machine learning repository [39].
Although there are many different data sets available in the
repository, only two of them seem to be suitable for the
considered problem. An appropriate data set should contain
as many data elements as possible to imitate the stream of
data properly. One of the considered data sets is the KDD
CUP 99, consisting of 4 898 431 data elements. Data are
described by 41 attributes, seven of which are nominal and 34
are numerical. Each data element belongs to one of the two
classes. One class represents a network attacks and the second
one is identified with normal network connections (without
attack). It should be noted that the data distribution is very
uneven: the attack class constitutes about 80% of the whole
data set. Although there exists an original testing data set in
the repository, as its authors indicate, it is not from the same
probability distribution as the training data set. Therefore, for
the purposes of the presented simulations, the testing data sets
were randomly selected from the training set. The data set
was divided into two equinumerous parts, first one intended
for learning and the second one for testing. Such procedure
was performed five times, providing in total five training data
sets and their complementary testing data sets. The accuracy
evaluation was performed before every split of the node that
occurred in the considered tree. The accuracy for one particular
number of data elements is calculated as the average over
five data sets described above. The second real set of data
used in the following simulations is the Covertype data set,
consisting of 581 012 data elements. Data are characterized
by 10 numerical and 44 nominal attributes. Each data element
belongs to one of seven classes, each representing forest cover
type designation. The testing data sets were taken randomly
from the training data set in the same way as for the KDD CUP
99 problem.

B. Performance of Decision Trees Based on
Misclassification Error

First, we examine the performance of the mDT algorithm
depending on the values of parameter δ. Simulation was

ACCEPTED FOR PUBLICATION IN IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL.26, NO.5, PP.1048-1059, MAY 2015

IE
EE

Pr
oo

f

8

Fig. 2. Dependence between the value of parameter δ and the accuracy of
the mDT algorithm averaged over all 12 concepts.

Fig. 3. Accuracies of online (black line) and static (gray line) decision trees
with the splitting criterion based on the misclassification error averaged over
all 12 concepts.

conducted for training data set of size n = 108, for five
different values of δ, ranging from 10−5 to 10−1. The results
are shown in Fig. 2. As can be seen the accuracy does not
depend on the value of δ. Owing to this fact, in the following
experiments, the parameter δ is set to the value 0.1.

To compare the performance of the static and online deci-
sion trees based on the misclassification error impurity mea-
sure (the smDT and the mDT algorithms), two experiments
were conducted. First, the accuracies of both algorithms were
investigated. The averages of the values of accuracy obtained
for 12 concepts are shown in Fig. 3. As can be seen the
average performance of static tree is better than that obtained
for the mDT. However, in half of investigated concepts, the
accuracy of the mDT was slightly better, and for the other half,
the accuracy of the static tree was much better. Due to this,
the average result is in favor of the static tree. The second
experiment compares the running time of the algorithms.
The result shown in Fig. 4 shows that the average time
needed for the static tree to process data is much higher than
that obtained for online tree. The time necessary to process
incoming data for the static tree is a power function depending
on the number of data, whereas for the mDT, it is a linear
function of n. Summarizing both former experiments, we draw
the conclusion that with little decrease in accuracy, we gain
significantly on processing time. Due to those results, we
recommend to use the mDT for the purpose of mining data
streams.

Fig. 4. Running time of online (black line) and static (gray line) decision
trees with the splitting criterion based on the misclassification error averaged
over all 12 concepts.

Fig. 5. Accuracies of the mDT algorithm (black line) and the gDT algorithm
(gray line) averaged over all 12 concepts.

In the following simulations, the mDT and the gDT algo-
rithms are compared. Algorithms were run for n = 103 data
elements up to N = 108 and the results are shown in Fig. 5.

For the number of data elements n above 107, the gDT
algorithm demonstrates higher accuracy; however, for smaller
training data sets, the mDT dominates significantly. It is due
to the fact that the mDT generally needs less data elements
to split the node than the gDT algorithm. Therefore, at the
beginning, the mDT produces more complex trees, what results
in higher accuracy. Although Fig. 5 shows the accuracy
averaged over 12 runs on 12 data concepts, the predominance
of the mDT over the gDT at initial stages is observed for the
majority of data concepts individually. This is shown in Fig. 6,
where the situation for four different concepts is presented.

As can be seen the mDT is much more accurate at the
beginning than the gDT for all four presented cases. Usually,
when the gDT makes the first split in the tree (the split of
the root), the mDT for the same number of data elements n
already consists of a few nodes. Higher complexity of the tree
ensures better accuracy.

The fact that the mDT guarantees higher accuracy for low
numbers n may be of practical importance in some aspects of
data stream mining. For example, the mDT may be used as a
compound in some ensemble algorithms or other algorithms
dealing with concept drift problem.

In the next experiments, the performance of the proposed
method was tested on two real data sets, described

ACCEPTED FOR PUBLICATION IN IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL.26, NO.5, PP.1048-1059, MAY 2015

IE
EE

Pr
oo

f

9

Fig. 6. Accuracies of the mDT algorithm (black line) and the gDT algorithm
(gray line) for one data concept with ω = 0.1, 0.15, 0.2, 0.25.

in Section IV-A. First, the KDD CUP 99 data set was
considered. The final accuracy was almost the same for the
mDT and the gDT algorithms (equal to 99.6% and 99.48%,
respectively). However, the mDT algorithm achieves higher
accuracy earlier than the gDT algorithm (i.e., processing
fewer data elements). This result is shown in Fig. 7. The
standard deviation of accuracy for 5000 data elements and
above does not exceed the value 4 · 10−3% for the gDT

Fig. 7. Accuracies of the mDT algorithm (black line) and the gDT algorithm
(gray line) for the KDD CUP 99 real data set.

Fig. 8. Final accuracies of different classifiers obtained for the Covertype
real data set.

algorithm and 0.6% for the mDT algorithm. For lower
number of data elements, it is less than 10%.

The results obtained for the Covertype data set
(which is a seven-class problem) are shown in Fig. 8.
The values of accuracy for the mDT and the gDT algorithms
are equal to 67.78% ± 0.84 and 48.79% ± 0.1, respectively.
As the authors of the data set claim in its description [39], the
accuracy obtained using neural network with backpropagation
learning was 70%. The linear discriminant analysis method
provided the accuracy equal to 58%. In view of these results,
the accuracy obtained by the proposed method seems to be
quite satisfactory. Moreover, it should be noted that, unlike
neural networks and linear discriminant analysis, the mDT
algorithm is performed in online manner, i.e., each single
data element is processed only once. It should be noted that
the size of training data set occurred to be too small to enable
the gDT algorithm to make a split. Therefore, additional
experiment was performed, using 579 012 data elements as a
training set and 2000 as a testing set. The obtained accuracies
were 67.1% for the mDT algorithm and 63.65% for the gDT
algorithm.

C. Performance of Decision Trees Based on the
Hybrid Split Measure

The major benefit of using the hDT algorithm is higher
accuracy than for the mDT and the gDT algorithms, it is
shown in Fig. 9. In most respects, initial splits were identical
as in the mDT algorithm. Split of the root, using Gini index
as a split measure, was made only once, for instance when

ACCEPTED FOR PUBLICATION IN IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL.26, NO.5, PP.1048-1059, MAY 2015

IE
EE

Pr
oo

f

10

Fig. 9. Accuracies of the mDT algorithm (solid black line), the gDT
algorithm (gray line), and the hDT algorithm (dotted black line) averaged
over all 12 concepts.

Fig. 10. Running time of the mDT algorithm (solid black line), the gDT
algorithm (gray line), and the hDT algorithm (dotted black line) averaged over
all 12 concepts.

application of misclassification error split measure does not
allow making a split at all. The advantages of the misclas-
sification error over the Gini index were already shown in
Fig. 6. At some stage of splitting tree, the arrangement of data
caused Gini index to be the impurity measure that provides
split faster. However, in most cases, only one split was made
using this measure and further growth of tree was obtained
using misclassification error impurity measure again. In line
with such procedure obtained accuracy is significantly higher
for all concepts. On average over all 12 data concepts, the
misclassification error impurity measure was used in about
92% cases. The maximum and minimum participation of Gini
index in one concept was 12.1% and 6.24%, respectively.

The drawback of the hDT algorithm is double calculation
and verification of splitting criterion. It is obvious that it has to
prolong the running time. Moreover, more complex tree also
extends time of processing data. However, as Fig. 8 shows,
the running time is only slightly higher.

The experiments on real data sets were also conducted for
the hDT algorithm. However, the results are exactly the same
as in the case of the mDT algorithm. Due to properties of
the data sets, all splits in the tree were executed according
to the misclassification error impurity measure. The number
of data elements occurred to be insufficient to made any split
using the Gini index and consequently insufficient to reveal
the advantages of the hDT algorithm.

TABLE II

TABLE III

TABLE IV

D. Comparison With the Hoeffding Tree Algorithm

In Section II-B, it was shown analytically and using Monte
Carlo simulations that the bound obtained in [33] cannot be
justified using Hoeffding’s theorem. However, it still can be
considered as a heuristic method, which gives satisfactory
practical results. Therefore, the comparison between the mDT
and the hDT algorithms with the Hoeffding tree algorithm
was carried out. The simulations were performed on two
previously mentioned data sets KDD CUP 99, Covertype and
additionally two small data sets Adults and Electricity. The
Adults data set consists of 30 161 elements and was taken from
the UCI repository [39]. The Electricity data set with 45 312
elements can be found in [40]. Data sets were divided into
training and testing subsets in the same way, as described in
Ssection IV-A. The Hoeffding tree algorithm was run with the
application of three different impurity measures: information
entropy, Gini index, and misclassification error. The average
accuracies obtained for each data set are presented in Table II
and their standard deviations are collected in Table III. The
abbreviations HTe, HTG, and HTm stand for the Hoeffding
tree with information entropy, Gini index, and misclassification
error, respectively.

As can be seen in majority of cases, the differences of
accuracies for compared methods are within the range of
standard deviation. Only for the Electricity data set, the HTm
algorithm seems to provide noticeably higher accuracy than
other methods. However, the HTm method produces decision
trees with significantly higher number of leaves. The average
number of leaves for different methods and different data sets
are presented in Table IV.

The mDT and the hDT algorithms provide significantly
less complex trees than the HTm algorithm. Moreover, as
it was already mentioned, the basis of the mDT algorithm
is mathematically justified unlike the HTm algorithm, which

ACCEPTED FOR PUBLICATION IN IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL.26, NO.5, PP.1048-1059, MAY 2015

IE
EE

Pr
oo

f

11

is heuristic. The conducted experiments demonstrate the high
usability of the misclassification error impurity measure in the
task of data stream mining.

V. CONCLUSION

In this paper, the application of decision trees in the task
of data stream classification was considered. A new criterion
for splitting the tree nodes was proposed, which is based
on the impurity measure called misclassification error. The
criterion allows to decide if the best attribute determined
for the current set of data elements in the node is also
the best according to the whole data stream. Numerical
simulations proved that the presented algorithm (mDT) is
able to give satisfactory accuracies of classification, espe-
cially at the beginning stages of decision tree development.
In addition, the mentioned criterion was combined with the
criterion based on Gini index. The resultant hybrid algo-
rithm (hDT) provided satisfactory accuracies at any time of
data stream processing, what was demonstrated in numerical
experiments.

ACKNOWLEDGMENT

The authors would like to thank the associate editor and
reviewers for their helpful comments.

REFERENCES

[1] J. Gama, “A survey on learning from data streams: Current and future
trends,” Prog. Artif. Intell., vol. 1, no. 1, pp. 45–55, Apr. 2012.

[2] V. Grossi and F. Turini, “Stream mining: A novel architecture for
ensemble-based classification,” Knowl. Inform. Syst., vol. 30, no. 2,
pp. 247–281, Feb. 2012.

[3] C. Aggarwal, Data Streams: Models and Algorithms. New York, NY,
USA: Springer-Verlag, 2007.

[4] M. Gaber, A. Zaslavsky, and S. Krishnaswamy, “Mining data streams:
A review,” Sigmod Rec., vol. 34, no. 2, pp. 18–26, Jun. 2005.

[5] D. Brzezinski and J. Stefanowski, “Reacting to different types of concept
drift: The accuracy updated ensemble algorithm,” IEEE Trans. Neural
Netw. Learn. Syst., vol. 25, no. 1, pp. 81–94, Jan. 2014.

[6] R. Bose, W. van der Aalst, I. Zliobaite, and M. Pechenizkiy, “Dealing
with concept drifts in process mining,” IEEE Trans. Neural Netw. Learn.
Syst., vol. 25, no. 1, pp. 154–171, Jan. 2014.

[7] K. Dyer, R. Capo, and R. Polikar, “Compose: A semisupervised
learning framework for initially labeled nonstationary streaming data,”
IEEE Trans. Neural Netw. Learn. Syst., vol. 25, no. 1, pp. 12–26,
Jan. 2014.

[8] J. Gomes, M. Gaber, P. Sousa, and E. Menasalvas, “Mining recurring
concepts in a dynamic feature space,” IEEE Trans. Neural Netw. Learn.
Syst., vol. 25, no. 1, pp. 95–110, Jan. 2014.

[9] L. Kuncheva and W. Faithfull, “PCA feature extraction for change
detection in multidimensional unlabeled data,” IEEE Trans. Neural Netw.
Learn. Syst., vol. 25, no. 1, pp. 69–80, Jan. 2014.

[10] M. Pratama, S. Anavatti, P. Angelov, and E. Lughofer, “PANFIS: A novel
incremental learning machine,” IEEE Trans. Neural Netw. Learn. Syst.,
vol. 25, no. 1, pp. 55–68, Jan. 2014.

[11] I. Zliobaite, A. Bifet, B. Pfahringer, and G. Holmes, “Active learning
with drifting streaming data,” IEEE Trans. Neural Netw. Learn. Syst.,
vol. 25, no. 1, pp. 27–39, Jan. 2014.

[12] E. Lughofer and P. Angelov, “Handling drifts and shifts in on-line data
streams with evolving fuzzy systems,” Appl. Soft Comput., vol. 11, no. 2,
pp. 2057–2068, Mar. 2011.

[13] N. Kasabov, “Evolving fuzzy neural networks for super-
vised/unsupervised online knowledge-based learning,” IEEE Trans.
Syst., Man, Cybern. B, Cybern., vol. 31, no. 6, pp. 902–918,
Dec. 2001.

[14] P. Angelov, E. Lughofer, and X. Zhou, “Evolving fuzzy classifiers
using different model architectures,” Fuzzy Sets Syst., vol. 159, no. 23,
pp. 3160–3182, Dec. 2008.

[15] P. Angelov and N. Kasabov, “Evolving computational intelligence sys-
tems,” in Proc. 1st Int. Workshop Genet. Fuzzy Syst., Granada, Spain,
2005, pp. 76–82.

[16] D. Dovzan, V. Logar, and I. Skrjanc, “Solving the sales prediction
problem with fuzzy evolving methods,” in Proc. IEEE Congr. Evol.
Comput. (CEC), Jun. 2012, pp. 1–8.

[17] P. Angelov, D. Filev, and N. Kasabov, Evolving Intelligent Systems:
Methodology and Applications. Piscataway, NJ, USA: IEEE Press,
2010.

[18] D. Brzezinski and J. Stefanowski, “Reacting to different types of concept
drift: The accuracy updated ensemble algorithm,” IEEE Trans. Neural
Netw. Learn. Syst., vol. 25, no. 1, pp. 81–94, Jan. 2014.

[19] G. Hulten, L. Spencer, and P. Domingos, “Mining time-changing data
streams,” in Proc. 7th ACM SIGKDD Int. Conf. Knowl. Discovery Data
Mining, 2001, pp. 97–106.

[20] W. Fan, Y. Huang, and P. Yu, “Decision tree evolution using limited
number of labeled data items from drifting data streams,” in Proc. 4th
IEEE Int. Conf. Data Mining, 2004, pp. 379–382.

[21] C. Franke, “Adaptivity in data stream mining,” Ph.D. dissertation, Dept.
Elect. Eng., Univ. California, Berkeley, CA, USA, 2009.

[22] J. Liu, X. Li, and W. Hong, “Ambiguous decision trees for mining
concept-drifting data streams,” Pattern Recognit. Lett., Elsevier, vol. 30,
no. 15, pp. 1347–1355, Nov. 2009.

[23] A. Tsymbal, “The problem of concept drift: Definitions and related
work,” Dept. Comput. Sci., Trinity College Dublin, Dublin, Ireland,
Tech. Rep. TCD-CS-2004-15, Apr. 2004.

[24] P. Vivekanandan and R. Nedunchezhian, “Mining rules of concept drift
using genetic algorithm,” J. Artif. Intell. Soft Comput. Res., vol. 1, no. 2,
pp. 135–145, 2011.

[25] A. Martin and P. Bartlett, Neural network learning: Theoretical Foun-
dations. Cambridge, U.K.: Cambridge Univ. Press, 2009.

[26] T. Cover and P. Hart, “Nearest neighbor pattern classification,” IEEE
Trans. Inf. Theory, vol. 13, no. 1, pp. 21–27, Jan. 1967.

[27] J. Gama, R. Fernandes, and R. Rocha, “Decision trees for mining data
streams,” Intell. Data Anal., vol. 10, no. 1, pp. 23–45, Mar. 2006.

[28] A. Bifet and R. Kirkby, “Data stream mining a practical approach,”
Dept. Comput. Sci., Univ. WAIKATO, Hamilton, New Zealand, Tech.
Rep., 2009.

[29] M. Wozniak, “A hybrid decision tree training method using data
streams,” Knowl. Inform. Syst., vol. 29, no. 2, pp. 335–347, 2011.

[30] J. Han and M. Kamber, Data Mining: Concepts and Techniques.
Amsterdam, The Netherlands: Elsevier, 2006.

[31] J. Quinlan, Learning Efficient Classification Procedures and Their
Application to Chess End Games. San Francisco, CA, USA: Morgan
Kaufmann, 1983, pp. 463–482.

[32] L. Breiman, J. Friedman, R. Olshen, and C. Stone, Classification and
Regression Trees. London, U.K.: Chapman and Hall, 1993.

[33] P. Domingos and G. Hulten, “Mining high-speed data streams,” in Proc.
6th ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining, 2000,
pp. 71–80.

[34] L. Rutkowski, L. Pietruczuk, P. Duda, and M. Jaworski, “Decision trees
for mining data streams based on the McDiarmid’s bound,” IEEE Trans.
Knowl. Data Eng., vol. 25, no. 6, pp. 1272–1279, Jun. 2013.

[35] L. Rutkowski, L. Pietruczuk, P. Duda, and M. Jaworski, “Decision
trees for mining data streams based on the Gaussian approxima-
tion,” IEEE Trans. Knowl. Data Eng., vol. 26, no. 1, pp. 108–119,
Jan. 2014.

[36] L. Rutkowski, M. Jaworski, L. Pietruczuk, and P. Duda, “The CART
decision tree for mining data streams,” Int. J. Inform. Sci., vol. 266,
pp. 1–15, May 2014.

[37] B. Pfahringer, G. Holmes, and R. Kirkby, “New options for Hoeffding
trees,” in AI, M. A. Orgun and J. Thornton, Eds. New York, NY, USA:
Springer-Verlag, 2007, pp. 90–99.

[38] O. Kardaun, Classical Methods of Statistics. New York, NY, USA:
Springer-Verlag, 2005.

[39] A. Frank and A. Asuncion. (2010). UCI Machine Learning Repository
[Online]. Available: http://archive.ics.uci.edu/ml/

[40] (2014). Massive Online Analysis [Online]. Available:
http://moa.cms.waikato.ac.nz/datasets/

ACCEPTED FOR PUBLICATION IN IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL.26, NO.5, PP.1048-1059, MAY 2015

IE
EE

Pr
oo

f

12

Leszek Rutkowski (F’–) received the M.Sc. and
Ph.D. degrees from the Wroclaw University of
Technology, Wroclaw, Poland, in 1977 and 1980,
respectively.

He has been with the Czestochowa University
of Technology, Czestochowa, Poland, since 1980,
where he is currently a Professor and the Director
of the Institute of Computational Intelligence. From
1987 to 1990, he held a visiting position with the
School of Electrical and Computer Engineering,
Oklahoma State University, Stillwater, OK, USA.

He has authored over 200 publications, including 20 papers in various series of
IEEE Transactions. His current research interests include stream data mining,
computational intelligence, pattern classification, and expert systems.

Dr. Rutkowski served in the IEEE Computational Intelligence Society as the
Chair of the Distinguished Lecturer Program from 2008 to 2009 and the Chair
of the Standards Committee from 2006 to 2007. He is the Founding Chair
of the Polish Chapter of the IEEE Computational Intelligence Society, which
received the 2008 Outstanding Chapter Award. In 2004, he was elected as a
member of the Polish Academy of Sciences. He was awarded by the IEEE
Fellow Membership Grade for contributions to neurocomputing and flexible
fuzzy systems in 2004. He was a recipient of the IEEE TRANSACTIONS ON

NEURAL NETWORKS Outstanding Paper Award in 2005.

Maciej Jaworski was born in Czestochowa, Poland,
in 1985. He received the M.Sc. (Hons.) degree
in theoretical physics from Jagiellonian University,
Krakow, Poland, in 2009, and the M.Sc. degree in
applied computer science from the University of
Science and Technology, Krakow, in 2011. He is
currently pursuing the Ph.D. degree in computer
science with the Department of Computer Engi-
neering, Czestochowa University of Technology,
Czestochowa.

His current research interests include computa-
tional intelligence and data stream mining.

Lena Pietruczuk was born in Blachownia, Poland,
in 1986. She received the M.S. degree in mathemat-
ics (genetic algorithms and their use in forecasting
demand) from the Department of Mathematics and
Computer Science, University of Wroclaw, Wroclaw,
Poland, in 2010. She is currently pursuing the Ph.D.
degree in computer science with the Department of
Computer Engineering, Czestochowa University of
Technology, Czestochowa, Poland.

Her current research interests include data
stream mining, neural networks, and evolutionary

algorithms.

Piotr Duda received the M.Sc. degree in mathemat-
ics from the Department of Mathematics, Physics,
and Chemistry, University of Silesia, Katowice,
Poland, in 2009. He is currently pursuing the Ph.D.
degree in computer science with the Department of
Computer Engineering, Czestochowa University of
Technology, Czestochowa, Poland.

His current research interests include statistics
and data stream mining, in particular, classification
problems.

ACCEPTED FOR PUBLICATION IN IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL.26, NO.5, PP.1048-1059, MAY 2015

IE
EE

Pr
oo

f

AUTHOR QUERIES

AQ:1 = In First footnote “Opertional Program” changed as “Operational Programme” as per editing aspect.
Please confirm the change.

AQ:2 = Please provide the caption for Tables I–IV.
AQ:3 = Fig. 10 is not cited in the body text. Please indicate where it should be cited.
AQ:4 = Please check if edit made in the sentence, “The advantages of the....in Fig. 6.” retains the intended

meaning.
AQ:5 = Please provide the report no. for ref. [28].
AQ:6 = Please provide the membership year for the author “Leszek Rutkowski.”

